Chapter 8: Introduction to Trigonometry
Exercise 8.1
Q1
In \( \Delta ABC \), right-angled at B, \( AB = 24 \) cm, \( BC = 7 \) cm. Determine:
(i) sin A, cos A
(ii) sin C, cos C▼
(i) sin A, cos A
(ii) sin C, cos C
Solution:
By Pythagoras theorem, \( AC^2 = AB^2 + BC^2 \)
\[ AC = \sqrt{24^2 + 7^2} = \sqrt{576 + 49} = \sqrt{625} = 25 \text{ cm} \]
(i) For angle A:
Opposite side = BC = 7, Adjacent side = AB = 24, Hypotenuse = AC = 25.
\[ \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{7}{25} \]
\[ \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{24}{25} \]
(ii) For angle C:
Opposite side = AB = 24, Adjacent side = BC = 7.
\[ \sin C = \frac{AB}{AC} = \frac{24}{25} \]
\[ \cos C = \frac{BC}{AC} = \frac{7}{25} \]
Q2
In Fig. 8.13, find \( \tan P - \cot R \).▼
Solution:
Given \( PQ = 12 \) cm, \( PR = 13 \) cm. Find QR using Pythagoras theorem:
\[ QR = \sqrt{PR^2 - PQ^2} = \sqrt{13^2 - 12^2} = \sqrt{169 - 144} = \sqrt{25} = 5 \text{ cm} \]
For angle P: Opposite = QR = 5, Adjacent = PQ = 12.
\[ \tan P = \frac{QR}{PQ} = \frac{5}{12} \]
For angle R: Adjacent = QR = 5, Opposite = PQ = 12.
\[ \cot R = \frac{QR}{PQ} = \frac{5}{12} \]
\[ \tan P - \cot R = \frac{5}{12} - \frac{5}{12} = 0 \]
Answer: 0
Q3
If \( \sin A = \frac{3}{4} \), calculate cos A and tan A.▼
Solution:
Let side opposite to A be \( 3k \) and hypotenuse be \( 4k \).
Using Pythagoras theorem: \( \text{Adjacent}^2 = (4k)^2 - (3k)^2 = 16k^2 - 9k^2 = 7k^2 \).
Adjacent side = \( \sqrt{7}k \).
\[ \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\sqrt{7}k}{4k} = \frac{\sqrt{7}}{4} \]
\[ \tan A = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{3k}{\sqrt{7}k} = \frac{3}{\sqrt{7}} \]
Q4
Given \( 15 \cot A = 8 \), find sin A and sec A.▼
Solution:
\[ \cot A = \frac{8}{15} = \frac{\text{Adjacent}}{\text{Opposite}} \]
Let Adjacent = \( 8k \), Opposite = \( 15k \).
Hypotenuse = \( \sqrt{(8k)^2 + (15k)^2} = \sqrt{64k^2 + 225k^2} = \sqrt{289k^2} = 17k \).
\[ \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{15k}{17k} = \frac{15}{17} \]
\[ \sec A = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{17k}{8k} = \frac{17}{8} \]
Q5
Given \( \sec \theta = \frac{13}{12} \), calculate all other trigonometric ratios.▼
Solution:
\[ \sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{13}{12} \]
Let Hypotenuse = \( 13k \), Adjacent = \( 12k \).
Opposite side = \( \sqrt{(13k)^2 - (12k)^2} = \sqrt{169k^2 - 144k^2} = \sqrt{25k^2} = 5k \).
Ratios:
\[ \sin \theta = \frac{5}{13} \]
\[ \cos \theta = \frac{12}{13} \]
\[ \tan \theta = \frac{5}{12} \]
\[ \text{cosec } \theta = \frac{13}{5} \]
\[ \cot \theta = \frac{12}{5} \]
Q6
If \( \angle A \) and \( \angle B \) are acute angles such that \( \cos A = \cos B \), then show that \( \angle A = \angle B \).▼
Solution:
Consider a triangle ABC right angled at C.
\[ \cos A = \frac{AC}{AB} \]
\[ \cos B = \frac{BC}{AB} \]
Given \( \cos A = \cos B \), therefore:
\[ \frac{AC}{AB} = \frac{BC}{AB} \]
\[ AC = BC \]
Angles opposite to equal sides in a triangle are equal. Therefore, \( \angle A = \angle B \).
Q7
If \( \cot \theta = \frac{7}{8} \), evaluate:
(i) \( \frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)} \)
(ii) \( \cot^2 \theta \)▼
(i) \( \frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)} \)
(ii) \( \cot^2 \theta \)
Solution:
(i) Simplify the expression using algebraic identity \( (a+b)(a-b) = a^2 - b^2 \).
\[ \frac{1 - \sin^2 \theta}{1 - \cos^2 \theta} \]
We know \( 1 - \sin^2 \theta = \cos^2 \theta \) and \( 1 - \cos^2 \theta = \sin^2 \theta \).
\[ = \frac{\cos^2 \theta}{\sin^2 \theta} = \left(\frac{\cos \theta}{\sin \theta}\right)^2 = \cot^2 \theta \]
Given \( \cot \theta = \frac{7}{8} \), so value is \( \left(\frac{7}{8}\right)^2 = \frac{49}{64} \).
(ii) \( \cot^2 \theta = \left(\frac{7}{8}\right)^2 = \frac{49}{64} \).
Q8
If \( 3 \cot A = 4 \), check whether \( \frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A \) or not.▼
Solution:
Given \( 3 \cot A = 4 \Rightarrow \cot A = \frac{4}{3} \Rightarrow \tan A = \frac{3}{4} \).
From \( \tan A = \frac{3}{4} \) (Opposite=3, Adjacent=4), Hypotenuse = \( \sqrt{3^2 + 4^2} = 5 \).
So, \( \sin A = \frac{3}{5} \) and \( \cos A = \frac{4}{5} \).
LHS: \( \frac{1 - (3/4)^2}{1 + (3/4)^2} = \frac{1 - 9/16}{1 + 9/16} = \frac{7/16}{25/16} = \frac{7}{25} \).
RHS: \( \cos^2 A - \sin^2 A = (\frac{4}{5})^2 - (\frac{3}{5})^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25} \).
Since LHS = RHS, the relation is True.
Q9
In triangle ABC, right-angled at B, if \( \tan A = \frac{1}{\sqrt{3}} \), find the value of:
(i) \( \sin A \cos C + \cos A \sin C \)
(ii) \( \cos A \cos C - \sin A \sin C \)▼
(i) \( \sin A \cos C + \cos A \sin C \)
(ii) \( \cos A \cos C - \sin A \sin C \)
Solution:
\( \tan A = \frac{1}{\sqrt{3}} \). This corresponds to angle \( A = 30^{\circ} \).
In right triangle ABC, \( A+C=90^{\circ} \), so \( C = 60^{\circ} \).
(i) \( \sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ} \)
\[ = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{1}{4} + \frac{3}{4} = 1 \]
(ii) \( \cos 30^{\circ} \cos 60^{\circ} - \sin 30^{\circ} \sin 60^{\circ} \)
\[ = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0 \]
Q10
In \( \Delta PQR \), right-angled at Q, \( PR + QR = 25 \) cm and \( PQ = 5 \) cm. Determine the values of sin P, cos P and tan P.▼
Solution:
Let \( QR = x \). Then \( PR = 25 - x \).
By Pythagoras theorem: \( PR^2 = PQ^2 + QR^2 \)
\[ (25 - x)^2 = 5^2 + x^2 \]
\[ 625 + x^2 - 50x = 25 + x^2 \]
\[ 50x = 600 \Rightarrow x = 12 \]
So, \( QR = 12 \) cm and \( PR = 13 \) cm.
\[ \sin P = \frac{12}{13}, \quad \cos P = \frac{5}{13}, \quad \tan P = \frac{12}{5} \]
Q11
State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) \( \sec A = \frac{12}{5} \) for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) \( \sin \theta = \frac{4}{3} \) for some angle \( \theta \).▼
(i) The value of tan A is always less than 1.
(ii) \( \sec A = \frac{12}{5} \) for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) \( \sin \theta = \frac{4}{3} \) for some angle \( \theta \).
Answers:
(i) False. tan A can be greater than 1 (e.g., tan 60 = 1.732).
(ii) True. sec A is always \( \ge 1 \). \( \frac{12}{5} = 2.4 \), which is possible.
(iii) False. cos A is cosine, cosec is cosecant.
(iv) False. cot A is a single term representing the cotangent of angle A.
(v) False. sin theta cannot exceed 1 (4/3 = 1.33).
Exercise 8.2
Q1
Evaluate the following:
(i) \( \sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ} \)
(ii) \( 2 \tan^2 45^{\circ} + \cos^2 30^{\circ} - \sin^2 60^{\circ} \)
(iii) \( \frac{\cos 45^{\circ}}{\sec 30^{\circ} + \text{cosec } 30^{\circ}} \)
(iv) \( \frac{\sin 30^{\circ} + \tan 45^{\circ} - \text{cosec } 60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}} \)
(v) \( \frac{5 \cos^2 60^{\circ} + 4 \sec^2 30^{\circ} - \tan^2 45^{\circ}}{\sin^2 30^{\circ} + \cos^2 30^{\circ}} \)▼
(i) \( \sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ} \)
(ii) \( 2 \tan^2 45^{\circ} + \cos^2 30^{\circ} - \sin^2 60^{\circ} \)
(iii) \( \frac{\cos 45^{\circ}}{\sec 30^{\circ} + \text{cosec } 30^{\circ}} \)
(iv) \( \frac{\sin 30^{\circ} + \tan 45^{\circ} - \text{cosec } 60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}} \)
(v) \( \frac{5 \cos^2 60^{\circ} + 4 \sec^2 30^{\circ} - \tan^2 45^{\circ}}{\sin^2 30^{\circ} + \cos^2 30^{\circ}} \)
Solution:
(i) \( \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1 \)
(ii) \( 2(1)^2 + (\frac{\sqrt{3}}{2})^2 - (\frac{\sqrt{3}}{2})^2 = 2 + \frac{3}{4} - \frac{3}{4} = 2 \)
(iii) \( \frac{1/\sqrt{2}}{2/\sqrt{3} + 2} = \frac{1/\sqrt{2}}{(2 + 2\sqrt{3})/\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{2}(2 + 2\sqrt{3})} \). Rationalize to get \( \frac{3\sqrt{2} - \sqrt{6}}{8} \).
(iv) Numerator: \( \frac{1}{2} + 1 - \frac{2}{\sqrt{3}} = \frac{3}{2} - \frac{2}{\sqrt{3}} \). Denominator: \( \frac{2}{\sqrt{3}} + \frac{1}{2} + 1 = \frac{3}{2} + \frac{2}{\sqrt{3}} \).
Simplify: \( \frac{3\sqrt{3}-4}{3\sqrt{3}+4} \). Rationalize: \( \frac{43 - 24\sqrt{3}}{11} \).
(v) Numerator: \( 5(\frac{1}{2})^2 + 4(\frac{2}{\sqrt{3}})^2 - 1^2 = \frac{5}{4} + \frac{16}{3} - 1 = \frac{15 + 64 - 12}{12} = \frac{67}{12} \).
Denominator: \( (\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2 = 1 \). Result: \( \frac{67}{12} \).
Q2
Choose the correct option and justify your choice:
(i) \( \frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}} = \)
(ii) \( \frac{1 - \tan^2 45^{\circ}}{1 + \tan^2 45^{\circ}} = \)
(iii) \( \sin 2A = 2 \sin A \) is true when \( A = \)
(iv) \( \frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}} = \)▼
(i) \( \frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}} = \)
(ii) \( \frac{1 - \tan^2 45^{\circ}}{1 + \tan^2 45^{\circ}} = \)
(iii) \( \sin 2A = 2 \sin A \) is true when \( A = \)
(iv) \( \frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}} = \)
Solution:
(i) \( \frac{2(1/\sqrt{3})}{1 + 1/3} = \frac{2/\sqrt{3}}{4/3} = \frac{\sqrt{3}}{2} = \sin 60^{\circ} \). Option (A).
(ii) \( \frac{1-1}{1+1} = 0 \). Option (D).
(iii) Check A=0: \( \sin 0 = 0, 2 \sin 0 = 0 \). Option (A).
(iv) \( \frac{2(1/\sqrt{3})}{1 - 1/3} = \frac{2/\sqrt{3}}{2/3} = \sqrt{3} = \tan 60^{\circ} \). Option (C).
Q3
If \( \tan(A + B) = \sqrt{3} \) and \( \tan(A - B) = \frac{1}{\sqrt{3}} \), find A and B.▼
Solution:
\( \tan(A+B) = \sqrt{3} \Rightarrow A + B = 60^{\circ} \).
\( \tan(A-B) = \frac{1}{\sqrt{3}} \Rightarrow A - B = 30^{\circ} \).
Adding the two equations: \( 2A = 90^{\circ} \Rightarrow A = 45^{\circ} \).
Subtracting: \( 2B = 30^{\circ} \Rightarrow B = 15^{\circ} \).
Answer: \( A = 45^{\circ}, B = 15^{\circ} \).
Q4
State whether the following are true or false. Justify your answer.
(i) \( \sin(A + B) = \sin A + \sin B \)
(ii) The value of \( \sin \theta \) increases as \( \theta \) increases.
(iii) The value of \( \cos \theta \) increases as \( \theta \) increases.
(iv) \( \sin \theta = \cos \theta \) for all values of \( \theta \).
(v) cot A is not defined for A = \( 0^{\circ} \).▼
(i) \( \sin(A + B) = \sin A + \sin B \)
(ii) The value of \( \sin \theta \) increases as \( \theta \) increases.
(iii) The value of \( \cos \theta \) increases as \( \theta \) increases.
(iv) \( \sin \theta = \cos \theta \) for all values of \( \theta \).
(v) cot A is not defined for A = \( 0^{\circ} \).
Answers:
(i) False. Let A=30, B=60. \( \sin(90)=1 \), but \( \sin 30 + \sin 60 \neq 1 \).
(ii) True. sin 0 = 0, sin 90 = 1.
(iii) False. cos 0 = 1, cos 90 = 0 (It decreases).
(iv) False. Only true for 45 degrees.
(v) True. \( \cot 0 = \frac{\cos 0}{\sin 0} = \frac{1}{0} \) (undefined).
Exercise 8.3
Q1
Express the trigonometric ratios \( \sin A \), \( \sec A \) and \( \tan A \) in terms of \( \cot A \).▼
Solution:
(i) \( \tan A \) in terms of \( \cot A \):
\[ \tan A = \frac{1}{\cot A} \]
(ii) \( \sec A \) in terms of \( \cot A \):
Using the identity \( \sec^2 A = 1 + \tan^2 A \):
\[ \sec A = \sqrt{1 + \frac{1}{\cot^2 A}} = \sqrt{\frac{\cot^2 A + 1}{\cot^2 A}} = \frac{\sqrt{1 + \cot^2 A}}{\cot A} \]
(iii) \( \sin A \) in terms of \( \cot A \):
Using the identity \( \text{cosec}^2 A = 1 + \cot^2 A \):
\[ \sin A = \frac{1}{\text{cosec } A} = \frac{1}{\sqrt{1 + \cot^2 A}} \]
Q2
Write all the other trigonometric ratios of \( \angle A \) in terms of \( \sec A \).▼
Solution:
- \( \cos A = \frac{1}{\sec A} \)
- \( \sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \frac{1}{\sec^2 A}} = \frac{\sqrt{\sec^2 A - 1}}{\sec A} \)
- \( \tan A = \sqrt{\sec^2 A - 1} \)
- \( \cot A = \frac{1}{\tan A} = \frac{1}{\sqrt{\sec^2 A - 1}} \)
- \( \text{cosec } A = \frac{1}{\sin A} = \frac{\sec A}{\sqrt{\sec^2 A - 1}} \)
Q3(i)
Choose the correct option. Justify your choice.
\( 9 \sec^2 A - 9 \tan^2 A = \)
(A) 1 (B) 9 (C) 8 (D) 0▼
\( 9 \sec^2 A - 9 \tan^2 A = \)
(A) 1 (B) 9 (C) 8 (D) 0
Solution:
\[ 9 \sec^2 A - 9 \tan^2 A = 9(\sec^2 A - \tan^2 A) \]
Using the identity \( \sec^2 A - \tan^2 A = 1 \):
\[ = 9(1) = 9 \]
Correct Option: (B)
Q3(ii)
Choose the correct option. Justify your choice.
\( (1 + \tan \theta + \sec \theta)(1 + \cot \theta - \text{cosec } \theta) = \)
(A) 0 (B) 1 (C) 2 (D) -1▼
\( (1 + \tan \theta + \sec \theta)(1 + \cot \theta - \text{cosec } \theta) = \)
(A) 0 (B) 1 (C) 2 (D) -1
Solution:
Convert all terms to sin and cos:
\[ \left(1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}\right) \left(1 + \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta}\right) \]
\[ = \left(\frac{\cos \theta + \sin \theta + 1}{\cos \theta}\right) \left(\frac{\sin \theta + \cos \theta - 1}{\sin \theta}\right) \]
Numerator is of the form \( (x+1)(x-1) = x^2 - 1 \) where \( x = \sin \theta + \cos \theta \).
\[ = \frac{(\sin \theta + \cos \theta)^2 - 1^2}{\sin \theta \cos \theta} \]
\[ = \frac{\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta - 1}{\sin \theta \cos \theta} \]
\[ = \frac{1 + 2\sin \theta \cos \theta - 1}{\sin \theta \cos \theta} = \frac{2\sin \theta \cos \theta}{\sin \theta \cos \theta} = 2 \]
Correct Option: (C)
Q3(iii)
Choose the correct option. Justify your choice.
\( (\sec A + \tan A)(1 - \sin A) = \)
(A) \( \sec A \) (B) \( \sin A \) (C) \( \text{cosec } A \) (D) \( \cos A \)▼
\( (\sec A + \tan A)(1 - \sin A) = \)
(A) \( \sec A \) (B) \( \sin A \) (C) \( \text{cosec } A \) (D) \( \cos A \)
Solution:
\[ \left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right) (1 - \sin A) \]
\[ = \left(\frac{1 + \sin A}{\cos A}\right) (1 - \sin A) \]
\[ = \frac{1 - \sin^2 A}{\cos A} = \frac{\cos^2 A}{\cos A} = \cos A \]
Correct Option: (D)
Q3(iv)
Choose the correct option. Justify your choice.
\( \frac{1 + \tan^2 A}{1 + \cot^2 A} = \)
(A) \( \sec^2 A \) (B) -1 (C) \( \cot^2 A \) (D) \( \tan^2 A \)▼
\( \frac{1 + \tan^2 A}{1 + \cot^2 A} = \)
(A) \( \sec^2 A \) (B) -1 (C) \( \cot^2 A \) (D) \( \tan^2 A \)
Solution:
Using identities \( 1+\tan^2 A = \sec^2 A \) and \( 1+\cot^2 A = \text{cosec}^2 A \):
\[ \frac{\sec^2 A}{\text{cosec}^2 A} = \frac{1/\cos^2 A}{1/\sin^2 A} = \frac{\sin^2 A}{\cos^2 A} = \tan^2 A \]
Correct Option: (D)
Q4(i)
Prove that: \( (\text{cosec } \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta} \)▼
Solution:
LHS \( = \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^2 = \left(\frac{1 - \cos \theta}{\sin \theta}\right)^2 \)
\[ = \frac{(1 - \cos \theta)^2}{\sin^2 \theta} = \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta} \]
\[ = \frac{(1 - \cos \theta)(1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)} = \frac{1 - \cos \theta}{1 + \cos \theta} = \text{RHS} \]
Q4(ii)
Prove that: \( \frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A \)▼
Solution:
LHS \( = \frac{\cos^2 A + (1 + \sin A)^2}{\cos A(1 + \sin A)} \)
\[ = \frac{\cos^2 A + 1 + \sin^2 A + 2\sin A}{\cos A(1 + \sin A)} \]
Using \( \cos^2 A + \sin^2 A = 1 \):
\[ = \frac{1 + 1 + 2\sin A}{\cos A(1 + \sin A)} = \frac{2 + 2\sin A}{\cos A(1 + \sin A)} \]
\[ = \frac{2(1 + \sin A)}{\cos A(1 + \sin A)} = \frac{2}{\cos A} = 2 \sec A = \text{RHS} \]
Q4(iii)
Prove that: \( \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \text{ cosec } \theta \)▼
Solution:
Convert to sin and cos:
LHS \( = \frac{\sin/\cos}{1 - \cos/\sin} + \frac{\cos/\sin}{1 - \sin/\cos} \)
\[ = \frac{\sin^2 \theta}{\cos \theta(\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta(\cos \theta - \sin \theta)} \]
\[ = \frac{\sin^2 \theta}{\cos \theta(\sin \theta - \cos \theta)} - \frac{\cos^2 \theta}{\sin \theta(\sin \theta - \cos \theta)} \]
\[ = \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta(\sin \theta - \cos \theta)} \]
Using \( a^3 - b^3 = (a-b)(a^2 + b^2 + ab) \):
\[ = \frac{(\sin \theta - \cos \theta)(\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)}{\sin \theta \cos \theta(\sin \theta - \cos \theta)} \]
\[ = \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} + 1 = \sec \theta \text{ cosec } \theta + 1 = \text{RHS} \]
Q4(iv)
Prove that: \( \frac{1 + \sec A}{\sec A} = \frac{\sin^2 A}{1 - \cos A} \)▼
Solution:
LHS \( = \frac{1 + 1/\cos A}{1/\cos A} = \frac{(\cos A + 1)/\cos A}{1/\cos A} = \cos A + 1 \)
RHS \( = \frac{\sin^2 A}{1 - \cos A} = \frac{1 - \cos^2 A}{1 - \cos A} = \frac{(1 - \cos A)(1 + \cos A)}{1 - \cos A} = 1 + \cos A \)
LHS = RHS. Hence Proved.
Q4(v)
Prove that: \( \frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \text{cosec } A + \cot A \)▼
Solution:
Divide numerator and denominator by \( \sin A \):
\[ \frac{\cot A - 1 + \text{cosec } A}{\cot A + 1 - \text{cosec } A} \]
Replace \( 1 \) in numerator with \( \text{cosec}^2 A - \cot^2 A \):
\[ = \frac{(\cot A + \text{cosec } A) - (\text{cosec}^2 A - \cot^2 A)}{\cot A - \text{cosec } A + 1} \]
\[ = \frac{(\cot A + \text{cosec } A) - (\text{cosec } A - \cot A)(\text{cosec } A + \cot A)}{\cot A - \text{cosec } A + 1} \]
\[ = \frac{(\cot A + \text{cosec } A)(1 - (\text{cosec } A - \cot A))}{\cot A - \text{cosec } A + 1} \]
\[ = \frac{(\cot A + \text{cosec } A)(1 - \text{cosec } A + \cot A)}{1 - \text{cosec } A + \cot A} \]
\[ = \cot A + \text{cosec } A = \text{RHS} \]
Q4(vi)
Prove that: \( \sqrt{\frac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A \)▼
Solution:
Multiply numerator and denominator inside the root by \( 1 + \sin A \):
\[ \sqrt{\frac{(1 + \sin A)(1 + \sin A)}{(1 - \sin A)(1 + \sin A)}} = \sqrt{\frac{(1 + \sin A)^2}{1 - \sin^2 A}} \]
\[ = \sqrt{\frac{(1 + \sin A)^2}{\cos^2 A}} = \frac{1 + \sin A}{\cos A} \]
\[ = \frac{1}{\cos A} + \frac{\sin A}{\cos A} = \sec A + \tan A = \text{RHS} \]
Q4(vii)
Prove that: \( \frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta \)▼
Solution:
LHS \( = \frac{\sin \theta(1 - 2\sin^2 \theta)}{\cos \theta(2\cos^2 \theta - 1)} \)
Using \( \cos 2\theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1 \):
\[ = \frac{\sin \theta(\cos 2\theta)}{\cos \theta(\cos 2\theta)} \]
\[ = \frac{\sin \theta}{\cos \theta} = \tan \theta = \text{RHS} \]
Q4(viii)
Prove that: \( (\sin A + \text{cosec } A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A \)▼
Solution:
Expand both squares:
\[ (\sin^2 A + \text{cosec}^2 A + 2\sin A \text{ cosec } A) + (\cos^2 A + \sec^2 A + 2\cos A \sec A) \]
Since \( \sin A \text{ cosec } A = 1 \) and \( \cos A \sec A = 1 \):
\[ = \sin^2 A + \cos^2 A + \text{cosec}^2 A + \sec^2 A + 2 + 2 \]
\[ = 1 + (1 + \cot^2 A) + (1 + \tan^2 A) + 4 \]
\[ = 1 + 1 + 1 + 4 + \tan^2 A + \cot^2 A = 7 + \tan^2 A + \cot^2 A = \text{RHS} \]
Q4(ix)
Prove that: \( (\text{cosec } A - \sin A)(\sec A - \cos A) = \frac{1}{\tan A + \cot A} \)▼
Solution:
LHS:
\[ \left(\frac{1}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right) \]
\[ = \left(\frac{1 - \sin^2 A}{\sin A}\right) \left(\frac{1 - \cos^2 A}{\cos A}\right) = \frac{\cos^2 A}{\sin A} \cdot \frac{\sin^2 A}{\cos A} = \sin A \cos A \]
RHS:
\[ \frac{1}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}} = \frac{1}{\frac{\sin^2 A + \cos^2 A}{\sin A \cos A}} = \frac{1}{\frac{1}{\sin A \cos A}} = \sin A \cos A \]
LHS = RHS. Hence Proved.
Q4(x)
Prove that: \( \left(\frac{1 + \tan^2 A}{1 + \cot^2 A}\right) = \left(\frac{1 - \tan A}{1 - \cot A}\right)^2 = \tan^2 A \)▼
Solution:
Part 1:
\[ \frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{\sec^2 A}{\text{cosec}^2 A} = \frac{1/\cos^2 A}{1/\sin^2 A} = \frac{\sin^2 A}{\cos^2 A} = \tan^2 A \]
Part 2:
\[ \left(\frac{1 - \tan A}{1 - \frac{1}{\tan A}}\right)^2 = \left(\frac{1 - \tan A}{\frac{\tan A - 1}{\tan A}}\right)^2 \]
\[ = \left(\frac{1 - \tan A}{-(1 - \tan A)} \cdot \tan A\right)^2 = (-\tan A)^2 = \tan^2 A \]
Both parts equal \( \tan^2 A \). Hence Proved.
