In each of the following Exercises 1 to 5, find the equation of the circle with:
Q1
centre (0, 2) and radius 2▼
Answer:
The equation of a circle with centre \((h, k)\) and radius \(r\) is given by \((x - h)^2 + (y - k)^2 = r^2\).
Here, \(h = 0\), \(k = 2\), and \(r = 2\).
Substituting these values:
\((x - 0)^2 + (y - 2)^2 = 2^2\)
\(x^2 + y^2 - 4y + 4 = 4\)
\(x^2 + y^2 - 4y = 0\)
Q2
centre (–2, 3) and radius 4▼
Answer:
Given: centre \((h, k) = (-2, 3)\) and radius \(r = 4\).
Using \((x - h)^2 + (y - k)^2 = r^2\):
\((x - (-2))^2 + (y - 3)^2 = 4^2\)
\((x + 2)^2 + (y - 3)^2 = 16\)
\(x^2 + 4x + 4 + y^2 - 6y + 9 = 16\)
\(x^2 + y^2 + 4x - 6y + 13 - 16 = 0\)
\(x^2 + y^2 + 4x - 6y - 3 = 0\)
Q3
centre \((\frac{1}{2}, \frac{1}{4})\) and radius \(\frac{1}{12}\)▼
Answer:
Given: centre \((h, k) = (\frac{1}{2}, \frac{1}{4})\) and radius \(r = \frac{1}{12}\).
Equation:
\((x - \frac{1}{2})^2 + (y - \frac{1}{4})^2 = (\frac{1}{12})^2\)
\(x^2 - x + \frac{1}{4} + y^2 - \frac{y}{2} + \frac{1}{16} = \frac{1}{144}\)
Multiplying by 144 to clear denominators:
\(144x^2 - 144x + 36 + 144y^2 - 72y + 9 = 1\)
\(144x^2 + 144y^2 - 144x - 72y + 45 - 1 = 0\)
\(144x^2 + 144y^2 - 144x - 72y + 44 = 0\)
Dividing by 4:
\(36x^2 + 36y^2 - 36x - 18y + 11 = 0\)
Q4
centre (1, 1) and radius \(\sqrt{2}\)▼
Answer:
Given: centre \((h, k) = (1, 1)\) and radius \(r = \sqrt{2}\).
Equation:
\((x - 1)^2 + (y - 1)^2 = (\sqrt{2})^2\)
\(x^2 - 2x + 1 + y^2 - 2y + 1 = 2\)
\(x^2 + y^2 - 2x - 2y + 2 = 2\)
\(x^2 + y^2 - 2x - 2y = 0\)
Q5
centre \((-a, -b)\) and radius \(\sqrt{a^2 - b^2}\)▼
Answer:
Given: centre \((h, k) = (-a, -b)\) and radius \(r = \sqrt{a^2 - b^2}\).
Equation:
\((x - (-a))^2 + (y - (-b))^2 = (\sqrt{a^2 - b^2})^2\)
\((x + a)^2 + (y + b)^2 = a^2 - b^2\)
\(x^2 + 2ax + a^2 + y^2 + 2by + b^2 = a^2 - b^2\)
\(x^2 + y^2 + 2ax + 2by + b^2 + b^2 = 0\)
\(x^2 + y^2 + 2ax + 2by + 2b^2 = 0\)
In each of the following Exercises 6 to 9, find the centre and radius of the circles.
Q6
\((x + 5)^2 + (y - 3)^2 = 36\)▼
Answer:
Comparing with the standard form \((x - h)^2 + (y - k)^2 = r^2\):
\((x - (-5))^2 + (y - 3)^2 = 6^2\)
Centre: \((-5, 3)\)
Radius: 6
Q7
\(x^2 + y^2 - 4x - 8y - 45 = 0\)▼
Answer:
Method 1: Completing the square
\((x^2 - 4x) + (y^2 - 8y) = 45\)
\((x^2 - 4x + 4) + (y^2 - 8y + 16) = 45 + 4 + 16\)
\((x - 2)^2 + (y - 4)^2 = 65\)
Comparing with standard form:
Centre: \((2, 4)\)
Radius: \(\sqrt{65}\)
Q8
\(x^2 + y^2 - 8x + 10y - 12 = 0\)▼
Answer:
Grouping x and y terms:
\((x^2 - 8x) + (y^2 + 10y) = 12\)
\((x^2 - 8x + 16) + (y^2 + 10y + 25) = 12 + 16 + 25\)
\((x - 4)^2 + (y + 5)^2 = 53\)
Comparing with \((x - h)^2 + (y - k)^2 = r^2\):
Centre: \((4, -5)\)
Radius: \(\sqrt{53}\)
Q9
\(2x^2 + 2y^2 - x = 0\)▼
Answer:
First, divide the equation by 2 to make coefficients of \(x^2\) and \(y^2\) equal to 1:
\(x^2 + y^2 - \frac{x}{2} = 0\)
\((x^2 - \frac{x}{2}) + y^2 = 0\)
Adding \((\frac{1}{4})^2 = \frac{1}{16}\) to both sides:
\((x^2 - \frac{x}{2} + \frac{1}{16}) + y^2 = \frac{1}{16}\)
\((x - \frac{1}{4})^2 + (y - 0)^2 = (\frac{1}{4})^2\)
Centre: \((\frac{1}{4}, 0)\)
Radius: \(\frac{1}{4}\)
Q10
Find the equation of the circle passing through the points (4, 1) and (6, 5) and whose centre is on the line \(4x + y = 16\).▼
Answer:
Let the equation of the circle be \((x - h)^2 + (y - k)^2 = r^2\).
Since it passes through (4, 1): \((4 - h)^2 + (1 - k)^2 = r^2\) ... (i)
Since it passes through (6, 5): \((6 - h)^2 + (5 - k)^2 = r^2\) ... (ii)
Equating (i) and (ii):
\((4 - h)^2 + (1 - k)^2 = (6 - h)^2 + (5 - k)^2\)
\(16 - 8h + h^2 + 1 - 2k + k^2 = 36 - 12h + h^2 + 25 - 10k + k^2\)
\(17 - 8h - 2k = 61 - 12h - 10k\)
\(4h + 8k = 44 \Rightarrow h + 2k = 11\) ... (iii)
The centre \((h, k)\) lies on the line \(4x + y = 16\), so:
\(4h + k = 16\) ... (iv)
Multiplying (iv) by 2: \(8h + 2k = 32\). Subtracting (iii) from this:
\((8h + 2k) - (h + 2k) = 32 - 11 \Rightarrow 7h = 21 \Rightarrow h = 3\).
From (iv), \(k = 16 - 4(3) = 16 - 12 = 4\).
Centre is \((3, 4)\). Find radius using point (4, 1):
\(r^2 = (4 - 3)^2 + (1 - 4)^2 = 1^2 + (-3)^2 = 1 + 9 = 10\).
Equation: \((x - 3)^2 + (y - 4)^2 = 10\)
Q11
Find the equation of the circle passing through the points (2, 3) and (–1, 1) and whose centre is on the line \(x – 3y – 11 = 0\).▼
Answer:
Let centre be \((h, k)\). Since it passes through (2, 3) and (-1, 1), distances to centre are equal:
\((h - 2)^2 + (k - 3)^2 = (h + 1)^2 + (k - 1)^2\)
\(h^2 - 4h + 4 + k^2 - 6k + 9 = h^2 + 2h + 1 + k^2 - 2k + 1\)
\(-4h - 6k + 13 = 2h - 2k + 2\)
\(-6h - 4k = -11 \Rightarrow 6h + 4k = 11\) ... (i)
Centre lies on \(x - 3y - 11 = 0\), so \(h - 3k = 11\) ... (ii)
From (ii), \(h = 11 + 3k\). Substitute into (i):
\(6(11 + 3k) + 4k = 11 \Rightarrow 66 + 18k + 4k = 11\)
\(22k = -55 \Rightarrow k = -\frac{55}{22} = -\frac{5}{2}\).
\(h = 11 + 3(-\frac{5}{2}) = \frac{22 - 15}{2} = \frac{7}{2}\).
Radius square \(r^2 = (\frac{7}{2} - 2)^2 + (-\frac{5}{2} - 3)^2 = (\frac{3}{2})^2 + (-\frac{11}{2})^2 = \frac{9}{4} + \frac{121}{4} = \frac{130}{4}\).
Equation: \((x - \frac{7}{2})^2 + (y + \frac{5}{2})^2 = \frac{130}{4}\)
Simplify: \(x^2 - 7x + \frac{49}{4} + y^2 + 5y + \frac{25}{4} = \frac{130}{4}\)
\(x^2 + y^2 - 7x + 5y + \frac{74}{4} - \frac{130}{4} = 0\)
\(x^2 + y^2 - 7x + 5y - 14 = 0\)
Q12
Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point (2, 3).▼
Answer:
Since centre lies on x-axis, its coordinates are \((h, 0)\). Radius \(r = 5\).
Equation is \((x - h)^2 + (y - 0)^2 = 5^2\).
Passes through (2, 3): \((2 - h)^2 + 3^2 = 25\).
\((2 - h)^2 + 9 = 25 \Rightarrow (2 - h)^2 = 16\).
\(2 - h = \pm 4\).
If \(2 - h = 4 \Rightarrow h = -2\). Centre (-2, 0). Eq: \((x + 2)^2 + y^2 = 25\).
If \(2 - h = -4 \Rightarrow h = 6\). Centre (6, 0). Eq: \((x - 6)^2 + y^2 = 25\).
Q13
Find the equation of the circle passing through (0, 0) and making intercepts \(a\) and \(b\) on the coordinate axes.▼
Answer:
The circle passes through origin O(0,0). Intercepts \(a\) and \(b\) on axes mean it passes through A(a, 0) and B(0, b).
Since \(\angle AOB = 90^\circ\), the chord AB is the diameter of the circle.
Midpoint of AB is the centre: \((\frac{a+0}{2}, \frac{0+b}{2}) = (\frac{a}{2}, \frac{b}{2})\).
Radius is distance from centre to origin: \(\sqrt{(\frac{a}{2})^2 + (\frac{b}{2})^2} = \sqrt{\frac{a^2+b^2}{4}}\).
Equation: \((x - \frac{a}{2})^2 + (y - \frac{b}{2})^2 = \frac{a^2+b^2}{4}\)
\(x^2 - ax + \frac{a^2}{4} + y^2 - by + \frac{b^2}{4} = \frac{a^2}{4} + \frac{b^2}{4}\)
Equation: \(x^2 + y^2 - ax - by = 0\)
Q14
Find the equation of a circle with centre (2, 2) and passes through the point (4, 5).▼
Answer:
Centre \((h, k) = (2, 2)\).
Radius \(r\) is the distance between (2, 2) and (4, 5).
\(r^2 = (4 - 2)^2 + (5 - 2)^2 = 2^2 + 3^2 = 4 + 9 = 13\).
Equation: \((x - 2)^2 + (y - 2)^2 = 13\).
\(x^2 - 4x + 4 + y^2 - 4y + 4 = 13\)
\(x^2 + y^2 - 4x - 4y - 5 = 0\)
Q15
Does the point (–2.5, 3.5) lie inside, outside or on the circle \(x^2 + y^2 = 25\)?▼
Answer:
The equation is \(x^2 + y^2 = 25\), so radius squared \(r^2 = 25\) (radius = 5) and centre is (0,0).
Calculate the distance squared of the point (-2.5, 3.5) from origin:
\(d^2 = (-2.5)^2 + (3.5)^2 = 6.25 + 12.25 = 18.5\).
Since \(18.5 < 25\) (i.e., \(d^2 < r^2\)), the point lies inside the circle.
In each of the following Exercises 1 to 6, find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.
Q1
\(y^2 = 12x\)▼
Answer:
The equation is of the form \(y^2 = 4ax\). Here \(4a = 12 \Rightarrow a = 3\).
- Focus (a, 0): (3, 0)
- Axis: x-axis (y = 0)
- Directrix (x = -a): \(x = -3\)
- Latus Rectum (4a): 12
Q2
\(x^2 = 6y\)▼
Answer:
The equation is of the form \(x^2 = 4ay\). Here \(4a = 6 \Rightarrow a = \frac{6}{4} = \frac{3}{2}\).
- Focus (0, a): \((0, \frac{3}{2})\)
- Axis: y-axis (x = 0)
- Directrix (y = -a): \(y = -\frac{3}{2}\)
- Latus Rectum (4a): 6
Q3
\(y^2 = -8x\)▼
Answer:
The equation is of the form \(y^2 = -4ax\). Here \(4a = 8 \Rightarrow a = 2\).
- Focus (-a, 0): (-2, 0)
- Axis: x-axis
- Directrix (x = a): \(x = 2\)
- Latus Rectum (4a): 8
Q4
\(x^2 = -16y\)▼
Answer:
The equation is of the form \(x^2 = -4ay\). Here \(4a = 16 \Rightarrow a = 4\).
- Focus (0, -a): (0, -4)
- Axis: y-axis
- Directrix (y = a): \(y = 4\)
- Latus Rectum (4a): 16
Q5
\(y^2 = 10x\)▼
Answer:
Form \(y^2 = 4ax\). \(4a = 10 \Rightarrow a = 2.5\).
- Focus (a, 0): (2.5, 0)
- Axis: x-axis
- Directrix: \(x = -2.5\)
- Latus Rectum: 10
Q6
\(x^2 = -9y\)▼
Answer:
Form \(x^2 = -4ay\). \(4a = 9 \Rightarrow a = \frac{9}{4}\).
- Focus (0, -a): \((0, -\frac{9}{4})\)
- Axis: y-axis
- Directrix: \(y = \frac{9}{4}\)
- Latus Rectum: 9
In each of the Exercises 7 to 12, find the equation of the parabola that satisfies the given conditions:
Q7
Focus (6, 0); directrix \(x = – 6\)▼
Answer:
Focus is on the positive x-axis \((a, 0)\) and directrix is \(x = -a\). This corresponds to \(y^2 = 4ax\).
Here \(a = 6\).
Equation: \(y^2 = 4(6)x \Rightarrow y^2 = 24x\).
Q8
Focus (0, –3); directrix \(y = 3\)▼
Answer:
Focus is on the negative y-axis \((0, -a)\) and directrix is \(y = a\). This corresponds to \(x^2 = -4ay\).
Here \(a = 3\).
Equation: \(x^2 = -4(3)y \Rightarrow x^2 = -12y\).
Q9
Vertex (0, 0); focus (3, 0)▼
Answer:
Vertex at origin and focus at (3, 0) (positive x-axis). Standard form \(y^2 = 4ax\).
Here \(a = 3\).
Equation: \(y^2 = 4(3)x \Rightarrow y^2 = 12x\).
Q10
Vertex (0, 0); focus (–2, 0)▼
Answer:
Vertex at origin and focus at (-2, 0) (negative x-axis). Standard form \(y^2 = -4ax\).
Here \(a = 2\).
Equation: \(y^2 = -4(2)x \Rightarrow y^2 = -8x\).
Q11
Vertex (0, 0) passing through (2, 3) and axis is along x-axis.▼
Answer:
Axis is along x-axis, so equation is either \(y^2 = 4ax\) or \(y^2 = -4ax\).
Point (2, 3) is in the first quadrant, so the parabola opens to the right: \(y^2 = 4ax\).
Substitute (2, 3): \(3^2 = 4a(2) \Rightarrow 9 = 8a \Rightarrow a = \frac{9}{8}\).
Equation: \(y^2 = 4(\frac{9}{8})x \Rightarrow y^2 = \frac{9}{2}x \Rightarrow 2y^2 = 9x\).
Q12
Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.▼
Answer:
Symmetric w.r.t y-axis means equation is \(x^2 = 4ay\) or \(x^2 = -4ay\).
Point (5, 2) has positive y, so it opens upwards: \(x^2 = 4ay\).
Substitute (5, 2): \(5^2 = 4a(2) \Rightarrow 25 = 8a \Rightarrow a = \frac{25}{8}\).
Equation: \(x^2 = 4(\frac{25}{8})y \Rightarrow x^2 = \frac{25}{2}y \Rightarrow 2x^2 = 25y\).
In each of the Exercises 1 to 9, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
Q1
\(\frac{x^2}{36} + \frac{y^2}{16} = 1\)▼
Answer:
Since the denominator of \(x^2\) (36) is greater than the denominator of \(y^2\) (16), the major axis is along the x-axis.
Comparing with \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\), we have \(a^2 = 36\) and \(b^2 = 16\).
So, \(a = 6\) and \(b = 4\).
\(c = \sqrt{a^2 - b^2} = \sqrt{36 - 16} = \sqrt{20} = 2\sqrt{5}\).
Foci \((\pm c, 0)\): \((\pm 2\sqrt{5}, 0)\)
Vertices \((\pm a, 0)\): \((\pm 6, 0)\)
Length of major axis \((2a)\): \(12\)
Length of minor axis \((2b)\): \(8\)
Eccentricity \(e = \frac{c}{a} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3}\)
Length of Latus Rectum \(\frac{2b^2}{a} = \frac{2(16)}{6} = \frac{16}{3}\)
Q2
\(\frac{x^2}{4} + \frac{y^2}{25} = 1\)▼
Answer:
Here \(25 > 4\), so the major axis is along the y-axis.
\(a^2 = 25 \Rightarrow a = 5\), \(b^2 = 4 \Rightarrow b = 2\).
\(c = \sqrt{a^2 - b^2} = \sqrt{25 - 4} = \sqrt{21}\).
Foci \((0, \pm c)\): \((0, \pm \sqrt{21})\)
Vertices \((0, \pm a)\): \((0, \pm 5)\)
Length of major axis \((2a)\): \(10\)
Length of minor axis \((2b)\): \(4\)
Eccentricity \(e = \frac{c}{a} = \frac{\sqrt{21}}{5}\)
Length of Latus Rectum \(\frac{2b^2}{a} = \frac{2(4)}{5} = \frac{8}{5}\)
Q3
\(\frac{x^2}{16} + \frac{y^2}{9} = 1\)▼
Answer:
Major axis is along the x-axis (\(16 > 9\)).
\(a = 4\), \(b = 3\). \(c = \sqrt{16-9} = \sqrt{7}\).
| Parameter | Value |
|---|---|
| Foci | \((\pm \sqrt{7}, 0)\) |
| Vertices | \((\pm 4, 0)\) |
| Major Axis Length | 8 |
| Minor Axis Length | 6 |
| Eccentricity | \(\frac{\sqrt{7}}{4}\) |
| Latus Rectum | \(\frac{2(9)}{4} = \frac{9}{2}\) |
Q4
\(\frac{x^2}{25} + \frac{y^2}{100} = 1\)▼
Answer:
Major axis is along the y-axis (\(100 > 25\)).
\(a = 10\), \(b = 5\). \(c = \sqrt{100-25} = \sqrt{75} = 5\sqrt{3}\).
| Parameter | Value |
|---|---|
| Foci | \((0, \pm 5\sqrt{3})\) |
| Vertices | \((0, \pm 10)\) |
| Major Axis Length | 20 |
| Minor Axis Length | 10 |
| Eccentricity | \(\frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}\) |
| Latus Rectum | \(\frac{2(25)}{10} = 5\) |
Q5
\(\frac{x^2}{49} + \frac{y^2}{36} = 1\)▼
Answer:
Major axis is along the x-axis.
\(a = 7\), \(b = 6\). \(c = \sqrt{49-36} = \sqrt{13}\).
Foci: \((\pm \sqrt{13}, 0)\), Vertices: \((\pm 7, 0)\)
Axes: Major = 14, Minor = 12
Eccentricity: \(\frac{\sqrt{13}}{7}\), LR: \(\frac{2(36)}{7} = \frac{72}{7}\)
Q6
\(\frac{x^2}{100} + \frac{y^2}{400} = 1\)▼
Answer:
Major axis is along the y-axis.
\(a = 20\), \(b = 10\). \(c = \sqrt{400-100} = \sqrt{300} = 10\sqrt{3}\).
Foci: \((0, \pm 10\sqrt{3})\), Vertices: \((0, \pm 20)\)
Axes: Major = 40, Minor = 20
Eccentricity: \(\frac{10\sqrt{3}}{20} = \frac{\sqrt{3}}{2}\), LR: \(\frac{2(100)}{20} = 10\)
Q7
\(36x^2 + 4y^2 = 144\)▼
Answer:
Divide by 144: \(\frac{x^2}{4} + \frac{y^2}{36} = 1\).
Major axis is y-axis. \(a = 6\), \(b = 2\). \(c = \sqrt{36-4} = \sqrt{32} = 4\sqrt{2}\).
Foci: \((0, \pm 4\sqrt{2})\), Vertices: \((0, \pm 6)\)
Axes: Major = 12, Minor = 4
Eccentricity: \(\frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}\), LR: \(\frac{2(4)}{6} = \frac{4}{3}\)
Q8
\(16x^2 + y^2 = 16\)▼
Answer:
Divide by 16: \(\frac{x^2}{1} + \frac{y^2}{16} = 1\).
Major axis is y-axis. \(a = 4\), \(b = 1\). \(c = \sqrt{16-1} = \sqrt{15}\).
Foci: \((0, \pm \sqrt{15})\), Vertices: \((0, \pm 4)\)
Axes: Major = 8, Minor = 2
Eccentricity: \(\frac{\sqrt{15}}{4}\), LR: \(\frac{2(1)}{4} = \frac{1}{2}\)
Q9
\(4x^2 + 9y^2 = 36\)▼
Answer:
Divide by 36: \(\frac{x^2}{9} + \frac{y^2}{4} = 1\).
Major axis is x-axis. \(a = 3\), \(b = 2\). \(c = \sqrt{9-4} = \sqrt{5}\).
Foci: \((\pm \sqrt{5}, 0)\), Vertices: \((\pm 3, 0)\)
Axes: Major = 6, Minor = 4
Eccentricity: \(\frac{\sqrt{5}}{3}\), LR: \(\frac{2(4)}{3} = \frac{8}{3}\)
In each of the following Exercises 10 to 20, find the equation for the ellipse that satisfies the given conditions:
Q10
Vertices \((\pm 5, 0)\), foci \((\pm 4, 0)\)▼
Answer:
Vertices are on the x-axis, so the equation is \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\).
\(a = 5\), \(c = 4\).
We know \(c^2 = a^2 - b^2 \Rightarrow 16 = 25 - b^2 \Rightarrow b^2 = 9\).
Equation: \(\frac{x^2}{25} + \frac{y^2}{9} = 1\)
Q11
Vertices \((0, \pm 13)\), foci \((0, \pm 5)\)▼
Answer:
Vertices are on the y-axis, so the equation is \(\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1\).
\(a = 13\), \(c = 5\).
\(b^2 = a^2 - c^2 = 169 - 25 = 144\).
Equation: \(\frac{x^2}{144} + \frac{y^2}{169} = 1\)
Q12
Vertices \((\pm 6, 0)\), foci \((\pm 4, 0)\)▼
Answer:
Vertices on x-axis. \(a = 6\), \(c = 4\).
\(b^2 = a^2 - c^2 = 36 - 16 = 20\).
Equation: \(\frac{x^2}{36} + \frac{y^2}{20} = 1\)
Q13
Ends of major axis \((\pm 3, 0)\), ends of minor axis \((0, \pm 2)\)▼
Answer:
Major axis on x-axis. \(a = 3\). Minor axis on y-axis. \(b = 2\).
\(a^2 = 9\), \(b^2 = 4\).
Equation: \(\frac{x^2}{9} + \frac{y^2}{4} = 1\)
Q14
Ends of major axis \((0, \pm \sqrt{5})\), ends of minor axis \((\pm 1, 0)\)▼
Answer:
Major axis on y-axis. \(a = \sqrt{5}\). Minor axis on x-axis. \(b = 1\).
\(a^2 = 5\), \(b^2 = 1\).
Equation: \(\frac{x^2}{1} + \frac{y^2}{5} = 1\)
Q15
Length of major axis 26, foci \((\pm 5, 0)\)▼
Answer:
Foci on x-axis. \(c = 5\). Length of major axis \(2a = 26 \Rightarrow a = 13\).
\(b^2 = a^2 - c^2 = 169 - 25 = 144\).
Equation: \(\frac{x^2}{169} + \frac{y^2}{144} = 1\)
Q16
Length of minor axis 16, foci \((0, \pm 6)\)▼
Answer:
Foci on y-axis. \(c = 6\). Length of minor axis \(2b = 16 \Rightarrow b = 8\).
\(a^2 = b^2 + c^2 = 64 + 36 = 100\).
Equation: \(\frac{x^2}{64} + \frac{y^2}{100} = 1\)
Q17
Foci \((\pm 3, 0), a = 4\)▼
Answer:
Foci on x-axis. \(c = 3\), \(a = 4\).
\(b^2 = a^2 - c^2 = 16 - 9 = 7\).
Equation: \(\frac{x^2}{16} + \frac{y^2}{7} = 1\)
Q18
\(b = 3, c = 4\), centre at the origin; foci on the x-axis.▼
Answer:
Foci on x-axis means horizontal ellipse.
\(a^2 = b^2 + c^2 = 9 + 16 = 25\).
Equation: \(\frac{x^2}{25} + \frac{y^2}{9} = 1\)
Q19
Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6).▼
Answer:
Since the major axis is the y-axis, equation is \(\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1\).
Passes through (3, 2): \(\frac{9}{b^2} + \frac{4}{a^2} = 1\) ... (i)
Passes through (1, 6): \(\frac{1}{b^2} + \frac{36}{a^2} = 1\) ... (ii)
Multiply (ii) by 9: \(\frac{9}{b^2} + \frac{324}{a^2} = 9\) ... (iii)
Subtract (i) from (iii): \(\frac{320}{a^2} = 8 \Rightarrow a^2 = 40\).
Substitute \(a^2 = 40\) in (ii): \(\frac{1}{b^2} + \frac{36}{40} = 1 \Rightarrow \frac{1}{b^2} = 1 - \frac{9}{10} = \frac{1}{10} \Rightarrow b^2 = 10\).
Equation: \(\frac{x^2}{10} + \frac{y^2}{40} = 1\)
Q20
Major axis on the x-axis and passes through the points (4, 3) and (6, 2).▼
Answer:
Equation is \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\).
Passes through (4, 3): \(\frac{16}{a^2} + \frac{9}{b^2} = 1\) ... (i)
Passes through (6, 2): \(\frac{36}{a^2} + \frac{4}{b^2} = 1\) ... (ii)
Multiply (i) by 4 and (ii) by 9:
\(\frac{64}{a^2} + \frac{36}{b^2} = 4\)
\(\frac{324}{a^2} + \frac{36}{b^2} = 9\)
Subtracting: \(\frac{260}{a^2} = 5 \Rightarrow a^2 = 52\).
Substitute \(a^2 = 52\) in (i): \(\frac{16}{52} + \frac{9}{b^2} = 1 \Rightarrow \frac{4}{13} + \frac{9}{b^2} = 1\).
\(\frac{9}{b^2} = 1 - \frac{4}{13} = \frac{9}{13} \Rightarrow b^2 = 13\).
Equation: \(\frac{x^2}{52} + \frac{y^2}{13} = 1\)
In each of the Exercises 1 to 6, find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.
Q1
\(\frac{x^2}{16} - \frac{y^2}{9} = 1\)▼
Answer:
Form: \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) (Horizontal Transverse Axis).
\(a^2 = 16 \Rightarrow a = 4\), \(b^2 = 9 \Rightarrow b = 3\).
\(c^2 = a^2 + b^2 = 16 + 9 = 25 \Rightarrow c = 5\).
Foci \((\pm c, 0)\): \((\pm 5, 0)\)
Vertices \((\pm a, 0)\): \((\pm 4, 0)\)
Eccentricity \(e = \frac{c}{a} = \frac{5}{4}\)
Latus Rectum \(\frac{2b^2}{a} = \frac{2(9)}{4} = \frac{9}{2}\)
Q2
\(\frac{y^2}{9} - \frac{x^2}{27} = 1\)▼
Answer:
Form: \(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1\) (Vertical Transverse Axis).
\(a^2 = 9 \Rightarrow a = 3\), \(b^2 = 27\).
\(c^2 = 9 + 27 = 36 \Rightarrow c = 6\).
Foci \((0, \pm c)\): \((0, \pm 6)\)
Vertices \((0, \pm a)\): \((0, \pm 3)\)
Eccentricity \(e = \frac{6}{3} = 2\)
Latus Rectum \(\frac{2(27)}{3} = 18\)
Q3
\(9y^2 - 4x^2 = 36\)▼
Answer:
Divide by 36: \(\frac{y^2}{4} - \frac{x^2}{9} = 1\).
Vertical transverse axis. \(a = 2\), \(b = 3\).
\(c = \sqrt{4+9} = \sqrt{13}\).
Foci: \((0, \pm \sqrt{13})\), Vertices: \((0, \pm 2)\)
Eccentricity: \(\frac{\sqrt{13}}{2}\), LR: \(\frac{2(9)}{2} = 9\)
Q4
\(16x^2 - 9y^2 = 576\)▼
Answer:
Divide by 576: \(\frac{x^2}{36} - \frac{y^2}{64} = 1\).
Horizontal transverse axis. \(a = 6\), \(b = 8\).
\(c = \sqrt{36+64} = \sqrt{100} = 10\).
Foci: \((\pm 10, 0)\), Vertices: \((\pm 6, 0)\)
Eccentricity: \(\frac{10}{6} = \frac{5}{3}\), LR: \(\frac{2(64)}{6} = \frac{64}{3}\)
Q5
\(5y^2 - 9x^2 = 36\)▼
Answer:
Divide by 36: \(\frac{5y^2}{36} - \frac{x^2}{4} = 1 \Rightarrow \frac{y^2}{36/5} - \frac{x^2}{4} = 1\).
Vertical transverse axis. \(a^2 = \frac{36}{5}\), \(b^2 = 4\).
\(c^2 = \frac{36}{5} + 4 = \frac{56}{5} \Rightarrow c = \sqrt{\frac{56}{5}} = 2\sqrt{\frac{14}{5}}\).
Foci: \((0, \pm 2\sqrt{\frac{14}{5}})\)
Vertices: \((0, \pm \frac{6}{\sqrt{5}})\)
Eccentricity: \(\frac{\sqrt{56/5}}{\sqrt{36/5}} = \frac{\sqrt{56}}{6} = \frac{2\sqrt{14}}{6} = \frac{\sqrt{14}}{3}\)
LR: \(\frac{2(4)}{6/\sqrt{5}} = \frac{8\sqrt{5}}{6} = \frac{4\sqrt{5}}{3}\)
Q6
\(49y^2 - 16x^2 = 784\)▼
Answer:
Divide by 784: \(\frac{y^2}{16} - \frac{x^2}{49} = 1\).
Vertical. \(a = 4\), \(b = 7\). \(c = \sqrt{16+49} = \sqrt{65}\).
Foci: \((0, \pm \sqrt{65})\), Vertices: \((0, \pm 4)\)
Eccentricity: \(\frac{\sqrt{65}}{4}\), LR: \(\frac{2(49)}{4} = \frac{49}{2}\)
In each of the Exercises 7 to 15, find the equations of the hyperbola satisfying the given conditions.
Q7
Vertices \((\pm 2, 0)\), foci \((\pm 3, 0)\)▼
Answer:
Horizontal hyperbola. \(a = 2, c = 3\).
\(b^2 = c^2 - a^2 = 9 - 4 = 5\).
Equation: \(\frac{x^2}{4} - \frac{y^2}{5} = 1\)
Q8
Vertices \((0, \pm 5)\), foci \((0, \pm 8)\)▼
Answer:
Vertical hyperbola. \(a = 5, c = 8\).
\(b^2 = c^2 - a^2 = 64 - 25 = 39\).
Equation: \(\frac{y^2}{25} - \frac{x^2}{39} = 1\)
Q9
Vertices \((0, \pm 3)\), foci \((0, \pm 5)\)▼
Answer:
Vertical hyperbola. \(a = 3, c = 5\).
\(b^2 = 25 - 9 = 16\).
Equation: \(\frac{y^2}{9} - \frac{x^2}{16} = 1\)
Q10
Foci \((\pm 5, 0)\), the transverse axis is of length 8.▼
Answer:
Horizontal hyperbola. \(c = 5\). Transverse axis \(2a = 8 \Rightarrow a = 4\).
\(b^2 = c^2 - a^2 = 25 - 16 = 9\).
Equation: \(\frac{x^2}{16} - \frac{y^2}{9} = 1\)
Q11
Foci \((0, \pm 13)\), the conjugate axis is of length 24.▼
Answer:
Vertical hyperbola. \(c = 13\). Conjugate axis \(2b = 24 \Rightarrow b = 12\).
\(a^2 = c^2 - b^2 = 169 - 144 = 25\).
Equation: \(\frac{y^2}{25} - \frac{x^2}{144} = 1\)
Q12
Foci \((\pm 3\sqrt{5}, 0)\), the latus rectum is of length 8.▼
Answer:
Horizontal hyperbola. \(c = 3\sqrt{5}\).
LR: \(\frac{2b^2}{a} = 8 \Rightarrow b^2 = 4a\).
\(c^2 = a^2 + b^2 \Rightarrow 45 = a^2 + 4a \Rightarrow a^2 + 4a - 45 = 0\).
\((a + 9)(a - 5) = 0 \Rightarrow a = 5\) (since \(a>0\)).
\(b^2 = 4(5) = 20\).
Equation: \(\frac{x^2}{25} - \frac{y^2}{20} = 1\)
Q13
Foci \((\pm 4, 0)\), the latus rectum is of length 12.▼
Answer:
Horizontal hyperbola. \(c = 4\).
\(\frac{2b^2}{a} = 12 \Rightarrow b^2 = 6a\).
\(16 = a^2 + 6a \Rightarrow a^2 + 6a - 16 = 0 \Rightarrow (a+8)(a-2) = 0 \Rightarrow a = 2\).
\(b^2 = 12\).
Equation: \(\frac{x^2}{4} - \frac{y^2}{12} = 1\)
Q14
vertices \((\pm 7, 0), e = \frac{4}{3}\)▼
Answer:
Horizontal hyperbola. \(a = 7\).
\(e = \frac{c}{a} = \frac{4}{3} \Rightarrow c = \frac{28}{3}\).
\(b^2 = c^2 - a^2 = \frac{784}{9} - 49 = \frac{784 - 441}{9} = \frac{343}{9}\).
Equation: \(\frac{x^2}{49} - \frac{9y^2}{343} = 1\)
Q15
Foci \((0, \pm \sqrt{10})\), passing through (2, 3)▼
Answer:
Vertical hyperbola: \(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1\). \(c = \sqrt{10}\).
\(a^2 + b^2 = 10 \Rightarrow b^2 = 10 - a^2\).
Passes through (2, 3): \(\frac{9}{a^2} - \frac{4}{10 - a^2} = 1\).
Let \(u = a^2\). \(9(10-u) - 4u = u(10-u) \Rightarrow 90 - 13u = 10u - u^2\).
\(u^2 - 23u + 90 = 0 \Rightarrow (u-18)(u-5) = 0\).
If \(a^2 = 18\), \(b^2 = -8\) (impossible). So \(a^2 = 5\), \(b^2 = 5\).
Equation: \(\frac{y^2}{5} - \frac{x^2}{5} = 1\) or \(y^2 - x^2 = 5\).
Q1
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.▼
(Paste image URL for Q1 Solution above)
Answer:
Let the vertex of the parabola be at the origin (0, 0) and the axis be along the x-axis.
Equation of the parabola: \(y^2 = 4ax\).
Since the diameter is 20 cm and depth is 5 cm, the coordinates of the end point of the diameter are \((5, 10)\).
Substituting \(x = 5\) and \(y = 10\) in the equation:
\((10)^2 = 4a(5) \Rightarrow 100 = 20a \Rightarrow a = 5\).
The focus is at \((a, 0)\). Thus, the focus is at (5, 0), which is the mid-point of the diameter.
Q2
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?▼
(Paste image URL for Q2 Solution above)
Answer:
Let the vertex of the parabola be at the origin (0, 0). Since the axis is vertical and it opens downwards (as it's an arch), the equation is \(x^2 = -4ay\).
The base is 5 m wide and height is 10 m. The coordinates of the end points of the base are \((\pm 2.5, -10)\).
Substitute \((2.5, -10)\) into the equation:
\((2.5)^2 = -4a(-10) \Rightarrow 6.25 = 40a \Rightarrow a = \frac{6.25}{40}\).
We need the width at 2 m from the vertex. Let the point be \((x, -2)\).
\(x^2 = -4(\frac{6.25}{40})(-2) = \frac{8 \times 6.25}{40} = \frac{50}{40} = 1.25\).
\(x = \sqrt{1.25} \approx 1.118\) m.
Total width = \(2x = 2(1.118) \approx \mathbf{2.23}\) m.
Q3
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.▼
(Paste image URL for Q3 Solution above)
Answer:
Let the lowest point of the cable be the vertex. Let vertex be at \((0, 6)\) because the shortest wire is 6 m.
Equation: \(x^2 = 4a(y - 6)\).
The bridge is 100 m long, so the ends are at \(x = \pm 50\). The longest wire is 30 m, so \(y = 30\). Point is \((50, 30)\).
\(50^2 = 4a(30 - 6) \Rightarrow 2500 = 4a(24) \Rightarrow 4a = \frac{2500}{24}\).
We need the length of the wire at 18 m from the middle (\(x = 18\)). Let length be \(L\).
\(18^2 = \frac{2500}{24}(L - 6)\)
\(324 = \frac{2500}{24}(L - 6) \Rightarrow L - 6 = \frac{324 \times 24}{2500} = 3.11\).
\(L = 6 + 3.11 = \mathbf{9.11}\) m.
Q4
An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.▼
(Paste image URL for Q4 Solution above)
Answer:
Let the centre of the base be the origin (0, 0).
Width \(2a = 8 \Rightarrow a = 4\). Height \(b = 2\).
Equation: \(\frac{x^2}{16} + \frac{y^2}{4} = 1\).
A point 1.5 m from one end (which is at \(x=4\)) corresponds to \(x = 4 - 1.5 = 2.5\).
Substitute \(x = 2.5\) or \(5/2\):
\(\frac{(2.5)^2}{16} + \frac{y^2}{4} = 1 \Rightarrow \frac{6.25}{16} + \frac{y^2}{4} = 1\).
\(\frac{y^2}{4} = 1 - \frac{6.25}{16} = \frac{9.75}{16}\).
\(y^2 = \frac{9.75 \times 4}{16} = \frac{9.75}{4} = 2.4375\).
\(y \approx \mathbf{1.56}\) m.
Q5
A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.▼
(Paste image URL for Q5 Solution above)
Answer:
Let the rod AB of length 12 cm touch axes at A(a, 0) and B(0, b). Point P(x, y) is on the rod such that AP = 3 cm. Thus PB = 9 cm.
Using section formula or trigonometry:
\(x = \frac{1 \cdot 0 + 3 \cdot a}{4}\) (Wait, simplified using similar triangles is better).
Let \(\theta\) be the angle the rod makes with the x-axis.
\(x = (12-3)\cos\theta = 9\cos\theta \Rightarrow \cos\theta = \frac{x}{9}\).
\(y = 3\sin\theta \Rightarrow \sin\theta = \frac{y}{3}\).
Using \(\sin^2\theta + \cos^2\theta = 1\):
\(\frac{y^2}{9} + \frac{x^2}{81} = 1\) or \(\frac{x^2}{81} + \frac{y^2}{9} = 1\).
Equation: An ellipse \(\frac{x^2}{81} + \frac{y^2}{9} = 1\).
Q6
Find the area of the triangle formed by the lines joining the vertex of the parabola \(x^2 = 12y\) to the ends of its latus rectum.▼
(Paste image URL for Q6 Solution above)
Answer:
Equation: \(x^2 = 12y\). Compare with \(x^2 = 4ay \Rightarrow 4a = 12 \Rightarrow a = 3\).
Vertex is at (0, 0). Focus is at (0, 3).
The latus rectum is the horizontal line passing through the focus. Ends of LR are \((\pm 2a, a)\), which are \((\pm 6, 3)\).
The triangle is formed by points (0, 0), (6, 3), and (-6, 3).
Base of triangle = Distance between (6, 3) and (-6, 3) = 12.
Height of triangle = y-coordinate of LR = 3.
Area = \(\frac{1}{2} \times \text{Base} \times \text{Height} = \frac{1}{2} \times 12 \times 3 = \mathbf{18}\) sq units.
Q7
A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m. Find the equation of the posts traced by the man.▼
(Paste image URL for Q7 Solution above)
Answer:
This describes an ellipse where the flag posts are the foci.
Sum of distances = \(2a = 10 \Rightarrow a = 5\).
Distance between foci = \(2c = 8 \Rightarrow c = 4\).
We know \(b^2 = a^2 - c^2 = 25 - 16 = 9\).
The equation of the path is \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\).
Equation: \(\frac{x^2}{25} + \frac{y^2}{9} = 1\).
Q8
An equilateral triangle is inscribed in the parabola \(y^2 = 4ax\), where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.▼
(Paste image URL for Q8 Solution above)
Answer:
Let the side length be \(L\). One vertex is at (0, 0). Since the parabola is symmetric about the x-axis, the other two vertices make angles of \(30^\circ\) and \(-30^\circ\) with the axis.
Coordinates of one vertex: \((L \cos 30^\circ, L \sin 30^\circ) = (L\frac{\sqrt{3}}{2}, \frac{L}{2})\).
Since this point lies on \(y^2 = 4ax\):
\((\frac{L}{2})^2 = 4a(L\frac{\sqrt{3}}{2})\)
\(\frac{L^2}{4} = 2\sqrt{3}aL\)
Dividing by \(L\) (since \(L \ne 0\)): \(\frac{L}{4} = 2\sqrt{3}a\).
\(L = 8\sqrt{3}a\).
Length of side: \(8a\sqrt{3}\).
