Class 11-NCERT Solutions-Chapter-13-Statistics

EXERCISE 13.1

Find the mean deviation about the mean for the data in Exercises 1 and 2.

Q1
4, 7, 8, 9, 10, 12, 13, 17

Answer:

1. Calculate Mean (\(\bar{x}\)):

\( \bar{x} = \frac{\sum x_i}{n} = \frac{4+7+8+9+10+12+13+17}{8} = \frac{80}{8} = 10 \)

2. Deviations \(|x_i - \bar{x}|\):

\(|4-10|=6, |7-10|=3, |8-10|=2, |9-10|=1, |10-10|=0\)

\(|12-10|=2, |13-10|=3, |17-10|=7\)

Sum of deviations = \( 6+3+2+1+0+2+3+7 = 24 \)

3. Result:

\( M.D.(\bar{x}) = \frac{\sum |x_i - \bar{x}|}{n} = \frac{24}{8} = \mathbf{3} \)

Q2
38, 70, 48, 40, 42, 55, 63, 46, 54, 44

Answer:

1. Calculate Mean:

\( \bar{x} = \frac{500}{10} = 50 \)

2. Deviations \(|x_i - 50|\):

12, 20, 2, 10, 8, 5, 13, 4, 4, 6

Sum = 84

3. Result:

\( M.D.(\bar{x}) = \frac{84}{10} = \mathbf{8.4} \)

Find the mean deviation about the median for the data in Exercises 3 and 4.

Q3
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

Answer:

1. Arrange in Ascending Order:

10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18

\( n = 12 \) (even).

2. Find Median (M):

\( M = \frac{6^{th} + 7^{th}}{2} = \frac{13 + 14}{2} = 13.5 \)

3. Deviations \(|x_i - 13.5|\):

Sum = \( 3.5 + 2.5 + 2.5 + 1.5 + 0.5 + 0.5 + 0.5 + 2.5 + 2.5 + 3.5 + 3.5 + 4.5 = 28 \)

4. Result:

\( M.D.(M) = \frac{28}{12} = \mathbf{2.33} \)

Q4
36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Answer:

1. Arrange in Ascending Order:

36, 42, 45, 46, 46, 49, 51, 53, 60, 72

\( n = 10 \).

2. Find Median:

\( M = \frac{46 + 49}{2} = 47.5 \)

3. Sum of Deviations: 70

4. Result:

\( M.D.(M) = \frac{70}{10} = \mathbf{7} \)

Find the mean deviation about the mean for the data in Exercises 5 and 6.

Q5
\(x_i\)510152025
\(f_i\)74635

Answer:

\(x_i\)\(f_i\)\(f_ix_i\)\(|x_i - \bar{x}|\)\(f_i|x_i - \bar{x}|\)
5735963
10440416
1569016
20360618
2551251155
Total25350-158

1. Mean \( \bar{x} = \frac{350}{25} = 14 \)

2. \( M.D.(\bar{x}) = \frac{158}{25} = \mathbf{6.32} \)

Q6
\(x_i\)1030507090
\(f_i\)42428168

Answer:

\(x_i\)\(f_i\)\(f_ix_i\)\(|x_i - \bar{x}|\)\(f_i|x_i - \bar{x}|\)
1044040160
302472020480
5028140000
7016112020320
90872040320
Total804000-1280

1. Mean \( \bar{x} = \frac{4000}{80} = 50 \)

2. \( M.D.(\bar{x}) = \frac{1280}{80} = \mathbf{16} \)

Find the mean deviation about the median for the data in Exercises 7 and 8.

Q7
\(x_i\)579101215
\(f_i\)862226

Answer:

\(x_i\)\(f_i\)\(c.f.\)\(|x_i - M|\)\(f_i|x_i - M|\)
588216
761400
921624
1021836
12220510
15626848
Total26--84

1. Median \( (N=26) \): \( \frac{N}{2} = 13 \). Observation > 13 in c.f. is 14. So, \( M = 7 \).

2. \( M.D.(M) = \frac{84}{26} = \mathbf{3.23} \)

Q8
\(x_i\)1521273035
\(f_i\)35678

Answer:

\(x_i\)\(f_i\)\(c.f.\)\(|x_i - M|\)\(f_i|x_i - M|\)
15331545
2158945
27614318
3072100
35829540
Total29--148

1. Median \( (N=29) \): \( \frac{29+1}{2} = 15^{th} \). Observation is 30. \( M = 30 \).

2. \( M.D.(M) = \frac{148}{29} = \mathbf{5.1} \)

Find the mean deviation about the mean for the data in Exercises 9 and 10.

Q9
Income per day in ₹0-100100-200200-300300-400400-500500-600600-700700-800
Number of persons489107543

Answer:

ClassMid (\(x_i\))\(f_i\)\(f_ix_i\)\(|x_i - \bar{x}|\)\(f_i|x_i - \bar{x}|\)
0-1005042003081232
100-200150812002081664
200-30025092250108972
300-400350103500880
400-5004507315092644
500-60055052750192960
600-700650426002921168
700-800750322503921176
Total-5017900-7896

1. Mean \( \bar{x} = \frac{17900}{50} = 358 \)

2. \( M.D.(\bar{x}) = \frac{7896}{50} = \mathbf{157.92} \)

Q10
Height in cms95-105105-115115-125125-135135-145145-155
Number of boys91326301210

Answer:

ClassMid (\(x_i\))\(f_i\)\(f_ix_i\)\(|x_i - \bar{x}|\)\(f_i|x_i - \bar{x}|\)
95-105100990025.3227.7
105-11511013143015.3198.9
115-1251202631205.3137.8
125-1351303039004.7141.0
135-14514012168014.7176.4
145-15515010150024.7247.0
Total-10012530-1128.8

1. Mean \( \bar{x} = \frac{12530}{100} = 125.3 \)

2. \( M.D.(\bar{x}) = \frac{1128.8}{100} = \mathbf{11.288} \)

Find the mean deviation about median for the following data :

Q11
Marks0-1010-2020-3030-4040-5050-60
Number of Girls68141642

Answer:

Class\(f_i\)\(c.f.\)Mid (\(x_i\))\(|x_i - M|\)\(f_i|x_i - M|\)
0-1066522.86137.16
10-208141512.86102.88
20-301428252.8640.04
30-401644357.14114.24
40-504484517.1468.56
50-602505527.1454.28
Total50---517.16

1. Median Position: \( N/2 = 25 \). Class: 20-30.

\( M = 20 + \frac{25-14}{14} \times 10 = 20 + 7.86 = 27.86 \)

2. \( M.D.(M) = \frac{517.16}{50} = \mathbf{10.34} \)

Q12
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age (in years)16-2021-2526-3031-3536-4041-4546-5051-55
Number5612142612169
[Hint: Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]

Answer:

Continuous ClassMid (\(x_i\))\(f_i\)\(c.f.\)\(|x_i - 38|\)\(f_i|x_i - 38|\)
15.5-20.5185520100
20.5-25.5236111590
25.5-30.528122310120
30.5-35.5331437570
35.5-40.538266300
40.5-45.5431275560
45.5-50.548169110160
50.5-55.553910015135
Total-100--735

1. Median \( (N=100) \): \( N/2 = 50 \). Median Class: 35.5-40.5.

\( M = 35.5 + \frac{50-37}{26} \times 5 = 35.5 + 2.5 = 38 \)

2. \( M.D.(M) = \frac{735}{100} = \mathbf{7.35} \)

EXERCISE 13.2

Find the mean and variance for each of the data in Exercises 1 to 5.

Q1
6, 7, 10, 12, 13, 4, 8, 12

Answer:

Number of observations \( n = 8 \).

1. Calculate Mean (\(\bar{x}\)):

\( \bar{x} = \frac{\sum x_i}{n} = \frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9 \)

2. Calculation Table:

\(x_i\)\(x_i - \bar{x}\)\((x_i - \bar{x})^2\)
6-39
7-24
1011
1239
13416
4-525
8-11
1239
Total-74

3. Calculate Variance (\( \sigma^2 \)):

\( \sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n} = \frac{74}{8} = \mathbf{9.25} \)

Q2
First \( n \) natural numbers

Answer:

The first \( n \) natural numbers are \( 1, 2, 3, \dots, n \).

Mean (\( \bar{x} \)):

\( \bar{x} = \frac{\text{Sum of first n natural numbers}}{n} = \frac{\frac{n(n+1)}{2}}{n} = \frac{n+1}{2} \)

Variance (\( \sigma^2 \)):

Formula: \( \sigma^2 = \frac{\sum x_i^2}{n} - (\bar{x})^2 \)

We know sum of squares: \( \sum x_i^2 = \frac{n(n+1)(2n+1)}{6} \)

\( \sigma^2 = \frac{n(n+1)(2n+1)}{6n} - \left( \frac{n+1}{2} \right)^2 \)

\( = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} \)

\( = \frac{n+1}{2} \left[ \frac{2n+1}{3} - \frac{n+1}{2} \right] \)

\( = \frac{n+1}{2} \left[ \frac{4n+2 - 3n - 3}{6} \right] \)

\( = \frac{n+1}{2} \left[ \frac{n-1}{6} \right] = \frac{n^2 - 1}{12} \)

Result: \( \frac{n^2 - 1}{12} \)

Q3
First 10 multiples of 3

Answer:

The observations are: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30. (\( n=10 \))

1. Calculate Mean:

\( \bar{x} = \frac{\sum x_i}{10} = \frac{165}{10} = 16.5 \)

2. Calculation Table:

\(x_i\)\((x_i - \bar{x})\)\((x_i - \bar{x})^2\)
3-13.5182.25
6-10.5110.25
9-7.556.25
12-4.520.25
15-1.52.25
181.52.25
214.520.25
247.556.25
2710.5110.25
3013.5182.25
Total-742.5

3. Calculate Variance:

\( \sigma^2 = \frac{742.5}{10} = \mathbf{74.25} \)

Q4
\(x_i\)6101418242830
\(f_i\)24712843

Answer:

\(x_i\)\(f_i\)\(f_ix_i\)\(x_i - \bar{x}\)\((x_i - \bar{x})^2\)\(f_i(x_i - \bar{x})^2\)
6212-13169338
10440-981324
14798-525175
1812216-1112
248192525200
284112981324
3039011121363
Total40760--1736

1. Mean \( \bar{x} = \frac{760}{40} = 19 \)

2. Variance \( \sigma^2 = \frac{1736}{40} = \mathbf{43.4} \)

Q5
\(x_i\)92939798102104109
\(f_i\)3232633

Answer:

\(x_i\)\(f_i\)\(f_ix_i\)\(x_i - \bar{x}\)\((x_i - \bar{x})^2\)\(f_i(x_i - \bar{x})^2\)
923276-864192
932186-74998
973291-3927
982196-248
10266122424
104331241648
1093327981243
Total222200--640

1. Mean \( \bar{x} = \frac{2200}{22} = 100 \)

2. Variance \( \sigma^2 = \frac{640}{22} = \mathbf{29.09} \)

Q6
Find the mean and standard deviation using short-cut method.
\(x_i\)606162636465666768
\(f_i\)21122925121045

Answer:

Assumed Mean \( A = 64 \). Step deviation \( y_i = x_i - A \).

\(x_i\)\(f_i\)\(y_i = x_i - 64\)\(f_iy_i\)\(y_i^2\)\(f_iy_i^2\)
602-4-81632
611-3-399
6212-2-24448
6329-1-29129
64250000
6512112112
6610220440
674312936
6854201680
Total100-0-286

1. Mean \( \bar{x} = A + \frac{\sum f_iy_i}{N} = 64 + \frac{0}{100} = \mathbf{64} \)

2. Variance \( \sigma^2 = \frac{\sum f_iy_i^2}{N} - (\frac{\sum f_iy_i}{N})^2 = \frac{286}{100} - 0 = 2.86 \)

3. Standard Deviation \( \sigma = \sqrt{2.86} \approx \mathbf{1.69} \)

Find the mean and variance for the following frequency distributions in Exercises 7 and 8.

Q7
Classes0-3030-6060-9090-120120-150150-180180-210
Frequencies23510352

Answer:

Assumed Mean \( A = 105 \), class width \( h = 30 \). \( y_i = \frac{x_i - 105}{30} \).

ClassMid (\(x_i\))\(f_i\)\(y_i\)\(f_iy_i\)\(f_iy_i^2\)
0-30152-3-618
30-60453-2-612
60-90755-1-55
90-12010510000
120-1501353133
150-180165521020
180-21019523618
Total-30-276

1. Mean \( \bar{x} = A + \frac{\sum f_iy_i}{N} \times h = 105 + \frac{2}{30} \times 30 = 105 + 2 = \mathbf{107} \)

2. Variance \( \sigma^2 = h^2 \left[ \frac{\sum f_iy_i^2}{N} - (\frac{\sum f_iy_i}{N})^2 \right] \)

\( = 30^2 \left[ \frac{76}{30} - (\frac{2}{30})^2 \right] = 900 \left[ 2.533 - 0.0044 \right] \)

(Or using fractions: \( 900 [\frac{76}{30} - \frac{4}{900}] = 30(76) - 4 = 2280 - 4 = 2276 \))

Variance = 2276

Q8
Classes0-1010-2020-3030-4040-50
Frequencies5815166

Answer:

Assumed Mean \( A = 25 \), \( h = 10 \). \( y_i = \frac{x_i - 25}{10} \).

Class\(x_i\)\(f_i\)\(y_i\)\(f_iy_i\)\(f_iy_i^2\)
0-1055-2-1020
10-20158-1-88
20-302515000
30-40351611616
40-5045621224
Total-50-1068

1. Mean \( \bar{x} = 25 + \frac{10}{50} \times 10 = 25 + 2 = \mathbf{27} \)

2. Variance \( \sigma^2 = 100 \left[ \frac{68}{50} - (\frac{10}{50})^2 \right] = 100 [ 1.36 - 0.04 ] = 100(1.32) = \mathbf{132} \)

Q9
Find the mean, variance and standard deviation using short-cut method.
Height in cms70-7575-8080-8585-9090-9595-100100-105105-110110-115
No. of children3477159663

Answer:

Mid-points (\(x_i\)): 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5

Assumed Mean \( A = 92.5 \), \( h = 5 \). \( y_i = \frac{x_i - 92.5}{5} \).

\(x_i\)\(f_i\)\(y_i\)\(f_iy_i\)\(f_iy_i^2\)
72.53-4-1248
77.54-3-1236
82.57-2-1428
87.57-1-77
92.515000
97.59199
102.5621224
107.5631854
112.5341248
Total60-6254

1. Mean \( \bar{x} = 92.5 + \frac{6}{60} \times 5 = 92.5 + 0.5 = \mathbf{93} \)

2. Variance \( \sigma^2 = 5^2 \left[ \frac{254}{60} - (\frac{6}{60})^2 \right] = 25 [ 4.233 - 0.01 ] = 25(4.223) \approx \mathbf{105.58} \)

3. Standard Deviation \( \sigma = \sqrt{105.58} \approx \mathbf{10.27} \)

Q10
The diameters of circles (in mm) drawn in a design are given below:
Diameters33-3637-4041-4445-4849-52
No. of circles1517212225
Calculate the standard deviation and mean diameter of the circles.

Answer:

The classes are discontinuous. Convert to continuous classes: 32.5-36.5, 36.5-40.5, etc.

Mid-points (\(x_i\)): 34.5, 38.5, 42.5, 46.5, 50.5.

Assumed Mean \( A = 42.5 \), \( h = 4 \).

Class\(x_i\)\(f_i\)\(y_i\)\(f_iy_i\)\(f_iy_i^2\)
32.5-36.534.515-2-3060
36.5-40.538.517-1-1717
40.5-44.542.521000
44.5-48.546.52212222
48.5-52.550.525250100
Total-100-25199

1. Mean \( \bar{x} = 42.5 + \frac{25}{100} \times 4 = 42.5 + 1 = \mathbf{43.5} \)

2. Variance \( \sigma^2 = 16 \left[ \frac{199}{100} - (\frac{25}{100})^2 \right] = 16 [ 1.99 - 0.0625 ] = 16(1.9275) = 30.84 \)

3. Standard Deviation \( \sigma = \sqrt{30.84} \approx \mathbf{5.55} \)

MISCELLANEOUS EXERCISE ON CHAPTER 13
Q1
The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

Answer:

Let the two unknown observations be \( x \) and \( y \).

Given: \( n = 8 \), Mean \( \bar{x} = 9 \), Variance \( \sigma^2 = 9.25 \).

Known observations: 6, 7, 10, 12, 12, 13.

Step 1: Use Mean Formula

\( \bar{x} = \frac{\sum x_i}{8} = 9 \Rightarrow \sum x_i = 72 \)

Sum of known observations = \( 6+7+10+12+12+13 = 60 \)

\( 60 + x + y = 72 \)

\( x + y = 12 \) ... (i)

Step 2: Use Variance Formula

\( \sigma^2 = \frac{\sum x_i^2}{n} - (\bar{x})^2 \)

\( 9.25 = \frac{\sum x_i^2}{8} - (9)^2 \)

\( 9.25 = \frac{\sum x_i^2}{8} - 81 \)

\( \frac{\sum x_i^2}{8} = 90.25 \Rightarrow \sum x_i^2 = 722 \)

Sum of squares of known observations = \( 36 + 49 + 100 + 144 + 144 + 169 = 642 \)

\( 642 + x^2 + y^2 = 722 \)

\( x^2 + y^2 = 80 \) ... (ii)

Step 3: Solve for x and y

From (i), squarring both sides: \( (x+y)^2 = 144 \)

\( x^2 + y^2 + 2xy = 144 \)

\( 80 + 2xy = 144 \Rightarrow 2xy = 64 \Rightarrow xy = 32 \)

The numbers are roots of \( t^2 - (sum)t + (product) = 0 \):

\( t^2 - 12t + 32 = 0 \)

\( (t-8)(t-4) = 0 \)

So, the observations are 4 and 8.

Q2
The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12, 14. Find the remaining two observations.

Answer:

Let unknown observations be \( x \) and \( y \).

\( n = 7, \bar{x} = 8, \sigma^2 = 16 \).

Step 1: Sum

\( \sum x_i = 7 \times 8 = 56 \)

Sum of known = \( 2+4+10+12+14 = 42 \)

\( 42 + x + y = 56 \Rightarrow x + y = 14 \) ... (i)

Step 2: Sum of Squares

\( \sigma^2 = \frac{\sum x_i^2}{7} - 8^2 \)

\( 16 = \frac{\sum x_i^2}{7} - 64 \Rightarrow \frac{\sum x_i^2}{7} = 80 \Rightarrow \sum x_i^2 = 560 \)

Sum of squares known = \( 4 + 16 + 100 + 144 + 196 = 460 \)

\( 460 + x^2 + y^2 = 560 \Rightarrow x^2 + y^2 = 100 \) ... (ii)

Step 3: Solve

\( (x+y)^2 = x^2 + y^2 + 2xy \)

\( 196 = 100 + 2xy \Rightarrow 2xy = 96 \Rightarrow xy = 48 \)

Equation: \( t^2 - 14t + 48 = 0 \)

\( (t-6)(t-8) = 0 \)

The remaining observations are 6 and 8.

Q3
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.

Answer:

Let original observations be \( x_i \). Given \( \bar{x} = 8 \) and \( \sigma = 4 \).

New observations \( y_i = 3x_i \).

New Mean (\( \bar{y} \)):

\( \bar{y} = \frac{\sum 3x_i}{n} = 3 \frac{\sum x_i}{n} = 3 \bar{x} \)

\( \bar{y} = 3 \times 8 = 24 \)

New Standard Deviation (\( \sigma_y \)):

If each observation is multiplied by a constant \( k \), the standard deviation gets multiplied by \( |k| \).

\( \sigma_y = |3| \sigma_x = 3 \times 4 = 12 \)

Result: New Mean = 24, New S.D. = 12.

Q4
Given that \( \bar{x} \) is the mean and \( \sigma^2 \) is the variance of \( n \) observations \( x_1, x_2, \dots, x_n \). Prove that the mean and variance of the observations \( ax_1, ax_2, ax_3, \dots, ax_n \) are \( a\bar{x} \) and \( a^2\sigma^2 \), respectively, \( (a \ne 0) \).

Answer:

Let observations be \( x_i \). Mean = \( \bar{x} \), Variance = \( \sigma^2 = \frac{1}{n} \sum (x_i - \bar{x})^2 \).

Let new observations be \( y_i = ax_i \).

1. New Mean (\( \bar{y} \)):

\( \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} ax_i = a \left( \frac{1}{n} \sum x_i \right) = a\bar{x} \).

2. New Variance (\( \sigma_y^2 \)):

\( \sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \)

\( = \frac{1}{n} \sum_{i=1}^{n} (ax_i - a\bar{x})^2 \)

\( = \frac{1}{n} \sum_{i=1}^{n} a^2(x_i - \bar{x})^2 \)

\( = a^2 \left[ \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] \)

\( = a^2 \sigma^2 \)

Hence Proved.

Q5
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted.
(ii) If it is replaced by 12.

Answer:

Given: \( n = 20, \bar{x} = 10, \sigma = 2 \).

Sum \( \sum x = 20 \times 10 = 200 \).

Variance \( \sigma^2 = 4 \).

\( 4 = \frac{\sum x^2}{20} - (10)^2 \Rightarrow \frac{\sum x^2}{20} = 104 \Rightarrow \sum x^2 = 2080 \).

Incorrect observation = 8.

(i) If wrong item is omitted:

New \( n = 19 \).

New Sum \( = 200 - 8 = 192 \).

Correct Mean \( = \frac{192}{19} \approx \mathbf{10.1} \).

New \( \sum x^2 = 2080 - 8^2 = 2080 - 64 = 2016 \).

New Variance \( = \frac{2016}{19} - (\frac{192}{19})^2 = 106.1 - (10.1)^2 = 106.1 - 102.01 = 4.09 \).

Correct S.D. \( = \sqrt{4.09} \approx \mathbf{2.02} \).

(ii) If it is replaced by 12:

New \( n = 20 \).

New Sum \( = 200 - 8 + 12 = 204 \).

Correct Mean \( = \frac{204}{20} = \mathbf{10.2} \).

New \( \sum x^2 = 2080 - 64 + 144 = 2160 \).

New Variance \( = \frac{2160}{20} - (10.2)^2 = 108 - 104.04 = 3.96 \).

Correct S.D. \( = \sqrt{3.96} \approx \mathbf{1.99} \).

Q6
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.

Answer:

Given: \( n = 100, \bar{x} = 20, \sigma = 3 \).

\( \sum x = 100 \times 20 = 2000 \).

\( \sigma^2 = 9 \Rightarrow \frac{\sum x^2}{100} - 400 = 9 \Rightarrow \sum x^2 = 100(409) = 40900 \).

Correction (Omitting 21, 21, 18):

New \( n = 100 - 3 = 97 \).

New Sum \( = 2000 - (21 + 21 + 18) = 2000 - 60 = 1940 \).

Correct Mean \( = \frac{1940}{97} = \mathbf{20} \).

New \( \sum x^2 = 40900 - (21^2 + 21^2 + 18^2) \)

\( = 40900 - (441 + 441 + 324) = 40900 - 1206 = 39694 \).

New Variance \( = \frac{39694}{97} - (20)^2 \)

\( = 409.216 - 400 = 9.216 \)

Correct S.D. \( = \sqrt{9.216} \approx \mathbf{3.03} \).

Scroll to Top