Find the mean deviation about the mean for the data in Exercises 1 and 2.
Q1
4, 7, 8, 9, 10, 12, 13, 17▼
Answer:
1. Calculate Mean (\(\bar{x}\)):
\( \bar{x} = \frac{\sum x_i}{n} = \frac{4+7+8+9+10+12+13+17}{8} = \frac{80}{8} = 10 \)
2. Deviations \(|x_i - \bar{x}|\):
\(|4-10|=6, |7-10|=3, |8-10|=2, |9-10|=1, |10-10|=0\)
\(|12-10|=2, |13-10|=3, |17-10|=7\)
Sum of deviations = \( 6+3+2+1+0+2+3+7 = 24 \)
3. Result:
\( M.D.(\bar{x}) = \frac{\sum |x_i - \bar{x}|}{n} = \frac{24}{8} = \mathbf{3} \)
Q2
38, 70, 48, 40, 42, 55, 63, 46, 54, 44▼
Answer:
1. Calculate Mean:
\( \bar{x} = \frac{500}{10} = 50 \)
2. Deviations \(|x_i - 50|\):
12, 20, 2, 10, 8, 5, 13, 4, 4, 6
Sum = 84
3. Result:
\( M.D.(\bar{x}) = \frac{84}{10} = \mathbf{8.4} \)
Find the mean deviation about the median for the data in Exercises 3 and 4.
Q3
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17▼
Answer:
1. Arrange in Ascending Order:
10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18
\( n = 12 \) (even).
2. Find Median (M):
\( M = \frac{6^{th} + 7^{th}}{2} = \frac{13 + 14}{2} = 13.5 \)
3. Deviations \(|x_i - 13.5|\):
Sum = \( 3.5 + 2.5 + 2.5 + 1.5 + 0.5 + 0.5 + 0.5 + 2.5 + 2.5 + 3.5 + 3.5 + 4.5 = 28 \)
4. Result:
\( M.D.(M) = \frac{28}{12} = \mathbf{2.33} \)
Q4
36, 72, 46, 42, 60, 45, 53, 46, 51, 49▼
Answer:
1. Arrange in Ascending Order:
36, 42, 45, 46, 46, 49, 51, 53, 60, 72
\( n = 10 \).
2. Find Median:
\( M = \frac{46 + 49}{2} = 47.5 \)
3. Sum of Deviations: 70
4. Result:
\( M.D.(M) = \frac{70}{10} = \mathbf{7} \)
Find the mean deviation about the mean for the data in Exercises 5 and 6.
Q5\(x_i\) 5 10 15 20 25 \(f_i\) 7 4 6 3 5
▼
| \(x_i\) | 5 | 10 | 15 | 20 | 25 |
|---|---|---|---|---|---|
| \(f_i\) | 7 | 4 | 6 | 3 | 5 |
Answer:
| \(x_i\) | \(f_i\) | \(f_ix_i\) | \(|x_i - \bar{x}|\) | \(f_i|x_i - \bar{x}|\) |
|---|---|---|---|---|
| 5 | 7 | 35 | 9 | 63 |
| 10 | 4 | 40 | 4 | 16 |
| 15 | 6 | 90 | 1 | 6 |
| 20 | 3 | 60 | 6 | 18 |
| 25 | 5 | 125 | 11 | 55 |
| Total | 25 | 350 | - | 158 |
1. Mean \( \bar{x} = \frac{350}{25} = 14 \)
2. \( M.D.(\bar{x}) = \frac{158}{25} = \mathbf{6.32} \)
Q6\(x_i\) 10 30 50 70 90 \(f_i\) 4 24 28 16 8
▼
| \(x_i\) | 10 | 30 | 50 | 70 | 90 |
|---|---|---|---|---|---|
| \(f_i\) | 4 | 24 | 28 | 16 | 8 |
Answer:
| \(x_i\) | \(f_i\) | \(f_ix_i\) | \(|x_i - \bar{x}|\) | \(f_i|x_i - \bar{x}|\) |
|---|---|---|---|---|
| 10 | 4 | 40 | 40 | 160 |
| 30 | 24 | 720 | 20 | 480 |
| 50 | 28 | 1400 | 0 | 0 |
| 70 | 16 | 1120 | 20 | 320 |
| 90 | 8 | 720 | 40 | 320 |
| Total | 80 | 4000 | - | 1280 |
1. Mean \( \bar{x} = \frac{4000}{80} = 50 \)
2. \( M.D.(\bar{x}) = \frac{1280}{80} = \mathbf{16} \)
Find the mean deviation about the median for the data in Exercises 7 and 8.
Q7\(x_i\) 5 7 9 10 12 15 \(f_i\) 8 6 2 2 2 6
▼
| \(x_i\) | 5 | 7 | 9 | 10 | 12 | 15 |
|---|---|---|---|---|---|---|
| \(f_i\) | 8 | 6 | 2 | 2 | 2 | 6 |
Answer:
| \(x_i\) | \(f_i\) | \(c.f.\) | \(|x_i - M|\) | \(f_i|x_i - M|\) |
|---|---|---|---|---|
| 5 | 8 | 8 | 2 | 16 |
| 7 | 6 | 14 | 0 | 0 |
| 9 | 2 | 16 | 2 | 4 |
| 10 | 2 | 18 | 3 | 6 |
| 12 | 2 | 20 | 5 | 10 |
| 15 | 6 | 26 | 8 | 48 |
| Total | 26 | - | - | 84 |
1. Median \( (N=26) \): \( \frac{N}{2} = 13 \). Observation > 13 in c.f. is 14. So, \( M = 7 \).
2. \( M.D.(M) = \frac{84}{26} = \mathbf{3.23} \)
Q8\(x_i\) 15 21 27 30 35 \(f_i\) 3 5 6 7 8
▼
| \(x_i\) | 15 | 21 | 27 | 30 | 35 |
|---|---|---|---|---|---|
| \(f_i\) | 3 | 5 | 6 | 7 | 8 |
Answer:
| \(x_i\) | \(f_i\) | \(c.f.\) | \(|x_i - M|\) | \(f_i|x_i - M|\) |
|---|---|---|---|---|
| 15 | 3 | 3 | 15 | 45 |
| 21 | 5 | 8 | 9 | 45 |
| 27 | 6 | 14 | 3 | 18 |
| 30 | 7 | 21 | 0 | 0 |
| 35 | 8 | 29 | 5 | 40 |
| Total | 29 | - | - | 148 |
1. Median \( (N=29) \): \( \frac{29+1}{2} = 15^{th} \). Observation is 30. \( M = 30 \).
2. \( M.D.(M) = \frac{148}{29} = \mathbf{5.1} \)
Find the mean deviation about the mean for the data in Exercises 9 and 10.
Q9Income per day in ₹ 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 Number of persons 4 8 9 10 7 5 4 3
▼
| Income per day in ₹ | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
|---|---|---|---|---|---|---|---|---|
| Number of persons | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Answer:
| Class | Mid (\(x_i\)) | \(f_i\) | \(f_ix_i\) | \(|x_i - \bar{x}|\) | \(f_i|x_i - \bar{x}|\) |
|---|---|---|---|---|---|
| 0-100 | 50 | 4 | 200 | 308 | 1232 |
| 100-200 | 150 | 8 | 1200 | 208 | 1664 |
| 200-300 | 250 | 9 | 2250 | 108 | 972 |
| 300-400 | 350 | 10 | 3500 | 8 | 80 |
| 400-500 | 450 | 7 | 3150 | 92 | 644 |
| 500-600 | 550 | 5 | 2750 | 192 | 960 |
| 600-700 | 650 | 4 | 2600 | 292 | 1168 |
| 700-800 | 750 | 3 | 2250 | 392 | 1176 |
| Total | - | 50 | 17900 | - | 7896 |
1. Mean \( \bar{x} = \frac{17900}{50} = 358 \)
2. \( M.D.(\bar{x}) = \frac{7896}{50} = \mathbf{157.92} \)
Q10Height in cms 95-105 105-115 115-125 125-135 135-145 145-155 Number of boys 9 13 26 30 12 10
▼
| Height in cms | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
|---|---|---|---|---|---|---|
| Number of boys | 9 | 13 | 26 | 30 | 12 | 10 |
Answer:
| Class | Mid (\(x_i\)) | \(f_i\) | \(f_ix_i\) | \(|x_i - \bar{x}|\) | \(f_i|x_i - \bar{x}|\) |
|---|---|---|---|---|---|
| 95-105 | 100 | 9 | 900 | 25.3 | 227.7 |
| 105-115 | 110 | 13 | 1430 | 15.3 | 198.9 |
| 115-125 | 120 | 26 | 3120 | 5.3 | 137.8 |
| 125-135 | 130 | 30 | 3900 | 4.7 | 141.0 |
| 135-145 | 140 | 12 | 1680 | 14.7 | 176.4 |
| 145-155 | 150 | 10 | 1500 | 24.7 | 247.0 |
| Total | - | 100 | 12530 | - | 1128.8 |
1. Mean \( \bar{x} = \frac{12530}{100} = 125.3 \)
2. \( M.D.(\bar{x}) = \frac{1128.8}{100} = \mathbf{11.288} \)
Find the mean deviation about median for the following data :
Q11Marks 0-10 10-20 20-30 30-40 40-50 50-60 Number of Girls 6 8 14 16 4 2
▼
| Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
|---|---|---|---|---|---|---|
| Number of Girls | 6 | 8 | 14 | 16 | 4 | 2 |
Answer:
| Class | \(f_i\) | \(c.f.\) | Mid (\(x_i\)) | \(|x_i - M|\) | \(f_i|x_i - M|\) |
|---|---|---|---|---|---|
| 0-10 | 6 | 6 | 5 | 22.86 | 137.16 |
| 10-20 | 8 | 14 | 15 | 12.86 | 102.88 |
| 20-30 | 14 | 28 | 25 | 2.86 | 40.04 |
| 30-40 | 16 | 44 | 35 | 7.14 | 114.24 |
| 40-50 | 4 | 48 | 45 | 17.14 | 68.56 |
| 50-60 | 2 | 50 | 55 | 27.14 | 54.28 |
| Total | 50 | - | - | - | 517.16 |
1. Median Position: \( N/2 = 25 \). Class: 20-30.
\( M = 20 + \frac{25-14}{14} \times 10 = 20 + 7.86 = 27.86 \)
2. \( M.D.(M) = \frac{517.16}{50} = \mathbf{10.34} \)
Q12
Calculate the mean deviation about median age for the age distribution of 100 persons given below:Age (in years) 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 Number 5 6 12 14 26 12 16 9
[Hint: Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]▼
| Age (in years) | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
|---|---|---|---|---|---|---|---|---|
| Number | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Answer:
| Continuous Class | Mid (\(x_i\)) | \(f_i\) | \(c.f.\) | \(|x_i - 38|\) | \(f_i|x_i - 38|\) |
|---|---|---|---|---|---|
| 15.5-20.5 | 18 | 5 | 5 | 20 | 100 |
| 20.5-25.5 | 23 | 6 | 11 | 15 | 90 |
| 25.5-30.5 | 28 | 12 | 23 | 10 | 120 |
| 30.5-35.5 | 33 | 14 | 37 | 5 | 70 |
| 35.5-40.5 | 38 | 26 | 63 | 0 | 0 |
| 40.5-45.5 | 43 | 12 | 75 | 5 | 60 |
| 45.5-50.5 | 48 | 16 | 91 | 10 | 160 |
| 50.5-55.5 | 53 | 9 | 100 | 15 | 135 |
| Total | - | 100 | - | - | 735 |
1. Median \( (N=100) \): \( N/2 = 50 \). Median Class: 35.5-40.5.
\( M = 35.5 + \frac{50-37}{26} \times 5 = 35.5 + 2.5 = 38 \)
2. \( M.D.(M) = \frac{735}{100} = \mathbf{7.35} \)
Find the mean and variance for each of the data in Exercises 1 to 5.
Q1
6, 7, 10, 12, 13, 4, 8, 12▼
Answer:
Number of observations \( n = 8 \).
1. Calculate Mean (\(\bar{x}\)):
\( \bar{x} = \frac{\sum x_i}{n} = \frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9 \)
2. Calculation Table:
| \(x_i\) | \(x_i - \bar{x}\) | \((x_i - \bar{x})^2\) |
|---|---|---|
| 6 | -3 | 9 |
| 7 | -2 | 4 |
| 10 | 1 | 1 |
| 12 | 3 | 9 |
| 13 | 4 | 16 |
| 4 | -5 | 25 |
| 8 | -1 | 1 |
| 12 | 3 | 9 |
| Total | - | 74 |
3. Calculate Variance (\( \sigma^2 \)):
\( \sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n} = \frac{74}{8} = \mathbf{9.25} \)
Q2
First \( n \) natural numbers▼
Answer:
The first \( n \) natural numbers are \( 1, 2, 3, \dots, n \).
Mean (\( \bar{x} \)):
\( \bar{x} = \frac{\text{Sum of first n natural numbers}}{n} = \frac{\frac{n(n+1)}{2}}{n} = \frac{n+1}{2} \)
Variance (\( \sigma^2 \)):
Formula: \( \sigma^2 = \frac{\sum x_i^2}{n} - (\bar{x})^2 \)
We know sum of squares: \( \sum x_i^2 = \frac{n(n+1)(2n+1)}{6} \)
\( \sigma^2 = \frac{n(n+1)(2n+1)}{6n} - \left( \frac{n+1}{2} \right)^2 \)
\( = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} \)
\( = \frac{n+1}{2} \left[ \frac{2n+1}{3} - \frac{n+1}{2} \right] \)
\( = \frac{n+1}{2} \left[ \frac{4n+2 - 3n - 3}{6} \right] \)
\( = \frac{n+1}{2} \left[ \frac{n-1}{6} \right] = \frac{n^2 - 1}{12} \)
Result: \( \frac{n^2 - 1}{12} \)
Q3
First 10 multiples of 3▼
Answer:
The observations are: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30. (\( n=10 \))
1. Calculate Mean:
\( \bar{x} = \frac{\sum x_i}{10} = \frac{165}{10} = 16.5 \)
2. Calculation Table:
| \(x_i\) | \((x_i - \bar{x})\) | \((x_i - \bar{x})^2\) |
|---|---|---|
| 3 | -13.5 | 182.25 |
| 6 | -10.5 | 110.25 |
| 9 | -7.5 | 56.25 |
| 12 | -4.5 | 20.25 |
| 15 | -1.5 | 2.25 |
| 18 | 1.5 | 2.25 |
| 21 | 4.5 | 20.25 |
| 24 | 7.5 | 56.25 |
| 27 | 10.5 | 110.25 |
| 30 | 13.5 | 182.25 |
| Total | - | 742.5 |
3. Calculate Variance:
\( \sigma^2 = \frac{742.5}{10} = \mathbf{74.25} \)
Q4\(x_i\) 6 10 14 18 24 28 30 \(f_i\) 2 4 7 12 8 4 3
▼
| \(x_i\) | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
|---|---|---|---|---|---|---|---|
| \(f_i\) | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Answer:
| \(x_i\) | \(f_i\) | \(f_ix_i\) | \(x_i - \bar{x}\) | \((x_i - \bar{x})^2\) | \(f_i(x_i - \bar{x})^2\) |
|---|---|---|---|---|---|
| 6 | 2 | 12 | -13 | 169 | 338 |
| 10 | 4 | 40 | -9 | 81 | 324 |
| 14 | 7 | 98 | -5 | 25 | 175 |
| 18 | 12 | 216 | -1 | 1 | 12 |
| 24 | 8 | 192 | 5 | 25 | 200 |
| 28 | 4 | 112 | 9 | 81 | 324 |
| 30 | 3 | 90 | 11 | 121 | 363 |
| Total | 40 | 760 | - | - | 1736 |
1. Mean \( \bar{x} = \frac{760}{40} = 19 \)
2. Variance \( \sigma^2 = \frac{1736}{40} = \mathbf{43.4} \)
Q5\(x_i\) 92 93 97 98 102 104 109 \(f_i\) 3 2 3 2 6 3 3
▼
| \(x_i\) | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
|---|---|---|---|---|---|---|---|
| \(f_i\) | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
Answer:
| \(x_i\) | \(f_i\) | \(f_ix_i\) | \(x_i - \bar{x}\) | \((x_i - \bar{x})^2\) | \(f_i(x_i - \bar{x})^2\) |
|---|---|---|---|---|---|
| 92 | 3 | 276 | -8 | 64 | 192 |
| 93 | 2 | 186 | -7 | 49 | 98 |
| 97 | 3 | 291 | -3 | 9 | 27 |
| 98 | 2 | 196 | -2 | 4 | 8 |
| 102 | 6 | 612 | 2 | 4 | 24 |
| 104 | 3 | 312 | 4 | 16 | 48 |
| 109 | 3 | 327 | 9 | 81 | 243 |
| Total | 22 | 2200 | - | - | 640 |
1. Mean \( \bar{x} = \frac{2200}{22} = 100 \)
2. Variance \( \sigma^2 = \frac{640}{22} = \mathbf{29.09} \)
Q6
Find the mean and standard deviation using short-cut method.\(x_i\) 60 61 62 63 64 65 66 67 68 \(f_i\) 2 1 12 29 25 12 10 4 5
▼
| \(x_i\) | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
|---|---|---|---|---|---|---|---|---|---|
| \(f_i\) | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
Answer:
Assumed Mean \( A = 64 \). Step deviation \( y_i = x_i - A \).
| \(x_i\) | \(f_i\) | \(y_i = x_i - 64\) | \(f_iy_i\) | \(y_i^2\) | \(f_iy_i^2\) |
|---|---|---|---|---|---|
| 60 | 2 | -4 | -8 | 16 | 32 |
| 61 | 1 | -3 | -3 | 9 | 9 |
| 62 | 12 | -2 | -24 | 4 | 48 |
| 63 | 29 | -1 | -29 | 1 | 29 |
| 64 | 25 | 0 | 0 | 0 | 0 |
| 65 | 12 | 1 | 12 | 1 | 12 |
| 66 | 10 | 2 | 20 | 4 | 40 |
| 67 | 4 | 3 | 12 | 9 | 36 |
| 68 | 5 | 4 | 20 | 16 | 80 |
| Total | 100 | - | 0 | - | 286 |
1. Mean \( \bar{x} = A + \frac{\sum f_iy_i}{N} = 64 + \frac{0}{100} = \mathbf{64} \)
2. Variance \( \sigma^2 = \frac{\sum f_iy_i^2}{N} - (\frac{\sum f_iy_i}{N})^2 = \frac{286}{100} - 0 = 2.86 \)
3. Standard Deviation \( \sigma = \sqrt{2.86} \approx \mathbf{1.69} \)
Find the mean and variance for the following frequency distributions in Exercises 7 and 8.
Q7Classes 0-30 30-60 60-90 90-120 120-150 150-180 180-210 Frequencies 2 3 5 10 3 5 2
▼
| Classes | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 | 180-210 |
|---|---|---|---|---|---|---|---|
| Frequencies | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
Answer:
Assumed Mean \( A = 105 \), class width \( h = 30 \). \( y_i = \frac{x_i - 105}{30} \).
| Class | Mid (\(x_i\)) | \(f_i\) | \(y_i\) | \(f_iy_i\) | \(f_iy_i^2\) |
|---|---|---|---|---|---|
| 0-30 | 15 | 2 | -3 | -6 | 18 |
| 30-60 | 45 | 3 | -2 | -6 | 12 |
| 60-90 | 75 | 5 | -1 | -5 | 5 |
| 90-120 | 105 | 10 | 0 | 0 | 0 |
| 120-150 | 135 | 3 | 1 | 3 | 3 |
| 150-180 | 165 | 5 | 2 | 10 | 20 |
| 180-210 | 195 | 2 | 3 | 6 | 18 |
| Total | - | 30 | - | 2 | 76 |
1. Mean \( \bar{x} = A + \frac{\sum f_iy_i}{N} \times h = 105 + \frac{2}{30} \times 30 = 105 + 2 = \mathbf{107} \)
2. Variance \( \sigma^2 = h^2 \left[ \frac{\sum f_iy_i^2}{N} - (\frac{\sum f_iy_i}{N})^2 \right] \)
\( = 30^2 \left[ \frac{76}{30} - (\frac{2}{30})^2 \right] = 900 \left[ 2.533 - 0.0044 \right] \)
(Or using fractions: \( 900 [\frac{76}{30} - \frac{4}{900}] = 30(76) - 4 = 2280 - 4 = 2276 \))
Variance = 2276
Q8Classes 0-10 10-20 20-30 30-40 40-50 Frequencies 5 8 15 16 6
▼
| Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
|---|---|---|---|---|---|
| Frequencies | 5 | 8 | 15 | 16 | 6 |
Answer:
Assumed Mean \( A = 25 \), \( h = 10 \). \( y_i = \frac{x_i - 25}{10} \).
| Class | \(x_i\) | \(f_i\) | \(y_i\) | \(f_iy_i\) | \(f_iy_i^2\) |
|---|---|---|---|---|---|
| 0-10 | 5 | 5 | -2 | -10 | 20 |
| 10-20 | 15 | 8 | -1 | -8 | 8 |
| 20-30 | 25 | 15 | 0 | 0 | 0 |
| 30-40 | 35 | 16 | 1 | 16 | 16 |
| 40-50 | 45 | 6 | 2 | 12 | 24 |
| Total | - | 50 | - | 10 | 68 |
1. Mean \( \bar{x} = 25 + \frac{10}{50} \times 10 = 25 + 2 = \mathbf{27} \)
2. Variance \( \sigma^2 = 100 \left[ \frac{68}{50} - (\frac{10}{50})^2 \right] = 100 [ 1.36 - 0.04 ] = 100(1.32) = \mathbf{132} \)
Q9
Find the mean, variance and standard deviation using short-cut method.Height in cms 70-75 75-80 80-85 85-90 90-95 95-100 100-105 105-110 110-115 No. of children 3 4 7 7 15 9 6 6 3
▼
| Height in cms | 70-75 | 75-80 | 80-85 | 85-90 | 90-95 | 95-100 | 100-105 | 105-110 | 110-115 |
|---|---|---|---|---|---|---|---|---|---|
| No. of children | 3 | 4 | 7 | 7 | 15 | 9 | 6 | 6 | 3 |
Answer:
Mid-points (\(x_i\)): 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5
Assumed Mean \( A = 92.5 \), \( h = 5 \). \( y_i = \frac{x_i - 92.5}{5} \).
| \(x_i\) | \(f_i\) | \(y_i\) | \(f_iy_i\) | \(f_iy_i^2\) |
|---|---|---|---|---|
| 72.5 | 3 | -4 | -12 | 48 |
| 77.5 | 4 | -3 | -12 | 36 |
| 82.5 | 7 | -2 | -14 | 28 |
| 87.5 | 7 | -1 | -7 | 7 |
| 92.5 | 15 | 0 | 0 | 0 |
| 97.5 | 9 | 1 | 9 | 9 |
| 102.5 | 6 | 2 | 12 | 24 |
| 107.5 | 6 | 3 | 18 | 54 |
| 112.5 | 3 | 4 | 12 | 48 |
| Total | 60 | - | 6 | 254 |
1. Mean \( \bar{x} = 92.5 + \frac{6}{60} \times 5 = 92.5 + 0.5 = \mathbf{93} \)
2. Variance \( \sigma^2 = 5^2 \left[ \frac{254}{60} - (\frac{6}{60})^2 \right] = 25 [ 4.233 - 0.01 ] = 25(4.223) \approx \mathbf{105.58} \)
3. Standard Deviation \( \sigma = \sqrt{105.58} \approx \mathbf{10.27} \)
Q10
The diameters of circles (in mm) drawn in a design are given below:Diameters 33-36 37-40 41-44 45-48 49-52 No. of circles 15 17 21 22 25
Calculate the standard deviation and mean diameter of the circles.▼
| Diameters | 33-36 | 37-40 | 41-44 | 45-48 | 49-52 |
|---|---|---|---|---|---|
| No. of circles | 15 | 17 | 21 | 22 | 25 |
Answer:
The classes are discontinuous. Convert to continuous classes: 32.5-36.5, 36.5-40.5, etc.
Mid-points (\(x_i\)): 34.5, 38.5, 42.5, 46.5, 50.5.
Assumed Mean \( A = 42.5 \), \( h = 4 \).
| Class | \(x_i\) | \(f_i\) | \(y_i\) | \(f_iy_i\) | \(f_iy_i^2\) |
|---|---|---|---|---|---|
| 32.5-36.5 | 34.5 | 15 | -2 | -30 | 60 |
| 36.5-40.5 | 38.5 | 17 | -1 | -17 | 17 |
| 40.5-44.5 | 42.5 | 21 | 0 | 0 | 0 |
| 44.5-48.5 | 46.5 | 22 | 1 | 22 | 22 |
| 48.5-52.5 | 50.5 | 25 | 2 | 50 | 100 |
| Total | - | 100 | - | 25 | 199 |
1. Mean \( \bar{x} = 42.5 + \frac{25}{100} \times 4 = 42.5 + 1 = \mathbf{43.5} \)
2. Variance \( \sigma^2 = 16 \left[ \frac{199}{100} - (\frac{25}{100})^2 \right] = 16 [ 1.99 - 0.0625 ] = 16(1.9275) = 30.84 \)
3. Standard Deviation \( \sigma = \sqrt{30.84} \approx \mathbf{5.55} \)
Q1
The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.▼
Answer:
Let the two unknown observations be \( x \) and \( y \).
Given: \( n = 8 \), Mean \( \bar{x} = 9 \), Variance \( \sigma^2 = 9.25 \).
Known observations: 6, 7, 10, 12, 12, 13.
Step 1: Use Mean Formula
\( \bar{x} = \frac{\sum x_i}{8} = 9 \Rightarrow \sum x_i = 72 \)
Sum of known observations = \( 6+7+10+12+12+13 = 60 \)
\( 60 + x + y = 72 \)
\( x + y = 12 \) ... (i)
Step 2: Use Variance Formula
\( \sigma^2 = \frac{\sum x_i^2}{n} - (\bar{x})^2 \)
\( 9.25 = \frac{\sum x_i^2}{8} - (9)^2 \)
\( 9.25 = \frac{\sum x_i^2}{8} - 81 \)
\( \frac{\sum x_i^2}{8} = 90.25 \Rightarrow \sum x_i^2 = 722 \)
Sum of squares of known observations = \( 36 + 49 + 100 + 144 + 144 + 169 = 642 \)
\( 642 + x^2 + y^2 = 722 \)
\( x^2 + y^2 = 80 \) ... (ii)
Step 3: Solve for x and y
From (i), squarring both sides: \( (x+y)^2 = 144 \)
\( x^2 + y^2 + 2xy = 144 \)
\( 80 + 2xy = 144 \Rightarrow 2xy = 64 \Rightarrow xy = 32 \)
The numbers are roots of \( t^2 - (sum)t + (product) = 0 \):
\( t^2 - 12t + 32 = 0 \)
\( (t-8)(t-4) = 0 \)
So, the observations are 4 and 8.
Q2
The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12, 14. Find the remaining two observations.▼
Answer:
Let unknown observations be \( x \) and \( y \).
\( n = 7, \bar{x} = 8, \sigma^2 = 16 \).
Step 1: Sum
\( \sum x_i = 7 \times 8 = 56 \)
Sum of known = \( 2+4+10+12+14 = 42 \)
\( 42 + x + y = 56 \Rightarrow x + y = 14 \) ... (i)
Step 2: Sum of Squares
\( \sigma^2 = \frac{\sum x_i^2}{7} - 8^2 \)
\( 16 = \frac{\sum x_i^2}{7} - 64 \Rightarrow \frac{\sum x_i^2}{7} = 80 \Rightarrow \sum x_i^2 = 560 \)
Sum of squares known = \( 4 + 16 + 100 + 144 + 196 = 460 \)
\( 460 + x^2 + y^2 = 560 \Rightarrow x^2 + y^2 = 100 \) ... (ii)
Step 3: Solve
\( (x+y)^2 = x^2 + y^2 + 2xy \)
\( 196 = 100 + 2xy \Rightarrow 2xy = 96 \Rightarrow xy = 48 \)
Equation: \( t^2 - 14t + 48 = 0 \)
\( (t-6)(t-8) = 0 \)
The remaining observations are 6 and 8.
Q3
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.▼
Answer:
Let original observations be \( x_i \). Given \( \bar{x} = 8 \) and \( \sigma = 4 \).
New observations \( y_i = 3x_i \).
New Mean (\( \bar{y} \)):
\( \bar{y} = \frac{\sum 3x_i}{n} = 3 \frac{\sum x_i}{n} = 3 \bar{x} \)
\( \bar{y} = 3 \times 8 = 24 \)
New Standard Deviation (\( \sigma_y \)):
If each observation is multiplied by a constant \( k \), the standard deviation gets multiplied by \( |k| \).
\( \sigma_y = |3| \sigma_x = 3 \times 4 = 12 \)
Result: New Mean = 24, New S.D. = 12.
Q4
Given that \( \bar{x} \) is the mean and \( \sigma^2 \) is the variance of \( n \) observations \( x_1, x_2, \dots, x_n \). Prove that the mean and variance of the observations \( ax_1, ax_2, ax_3, \dots, ax_n \) are \( a\bar{x} \) and \( a^2\sigma^2 \), respectively, \( (a \ne 0) \).▼
Answer:
Let observations be \( x_i \). Mean = \( \bar{x} \), Variance = \( \sigma^2 = \frac{1}{n} \sum (x_i - \bar{x})^2 \).
Let new observations be \( y_i = ax_i \).
1. New Mean (\( \bar{y} \)):
\( \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} ax_i = a \left( \frac{1}{n} \sum x_i \right) = a\bar{x} \).
2. New Variance (\( \sigma_y^2 \)):
\( \sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \)
\( = \frac{1}{n} \sum_{i=1}^{n} (ax_i - a\bar{x})^2 \)
\( = \frac{1}{n} \sum_{i=1}^{n} a^2(x_i - \bar{x})^2 \)
\( = a^2 \left[ \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] \)
\( = a^2 \sigma^2 \)
Hence Proved.
Q5
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted.
(ii) If it is replaced by 12.▼
(i) If wrong item is omitted.
(ii) If it is replaced by 12.
Answer:
Given: \( n = 20, \bar{x} = 10, \sigma = 2 \).
Sum \( \sum x = 20 \times 10 = 200 \).
Variance \( \sigma^2 = 4 \).
\( 4 = \frac{\sum x^2}{20} - (10)^2 \Rightarrow \frac{\sum x^2}{20} = 104 \Rightarrow \sum x^2 = 2080 \).
Incorrect observation = 8.
(i) If wrong item is omitted:
New \( n = 19 \).
New Sum \( = 200 - 8 = 192 \).
Correct Mean \( = \frac{192}{19} \approx \mathbf{10.1} \).
New \( \sum x^2 = 2080 - 8^2 = 2080 - 64 = 2016 \).
New Variance \( = \frac{2016}{19} - (\frac{192}{19})^2 = 106.1 - (10.1)^2 = 106.1 - 102.01 = 4.09 \).
Correct S.D. \( = \sqrt{4.09} \approx \mathbf{2.02} \).
(ii) If it is replaced by 12:
New \( n = 20 \).
New Sum \( = 200 - 8 + 12 = 204 \).
Correct Mean \( = \frac{204}{20} = \mathbf{10.2} \).
New \( \sum x^2 = 2080 - 64 + 144 = 2160 \).
New Variance \( = \frac{2160}{20} - (10.2)^2 = 108 - 104.04 = 3.96 \).
Correct S.D. \( = \sqrt{3.96} \approx \mathbf{1.99} \).
Q6
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.▼
Answer:
Given: \( n = 100, \bar{x} = 20, \sigma = 3 \).
\( \sum x = 100 \times 20 = 2000 \).
\( \sigma^2 = 9 \Rightarrow \frac{\sum x^2}{100} - 400 = 9 \Rightarrow \sum x^2 = 100(409) = 40900 \).
Correction (Omitting 21, 21, 18):
New \( n = 100 - 3 = 97 \).
New Sum \( = 2000 - (21 + 21 + 18) = 2000 - 60 = 1940 \).
Correct Mean \( = \frac{1940}{97} = \mathbf{20} \).
New \( \sum x^2 = 40900 - (21^2 + 21^2 + 18^2) \)
\( = 40900 - (441 + 441 + 324) = 40900 - 1206 = 39694 \).
New Variance \( = \frac{39694}{97} - (20)^2 \)
\( = 409.216 - 400 = 9.216 \)
Correct S.D. \( = \sqrt{9.216} \approx \mathbf{3.03} \).
