NCERT Solutions Class-12-Chapter-2-INverse Trigonometric Functions
Excercise-2.1
Note: To solve these questions, recall the Principal Value Branches of inverse trigonometric functions.
Q1
Find the principal value of \( \sin^{-1} \left( -\frac{1}{2} \right) \).▼
Solution:
Let \( \sin^{-1} \left( -\frac{1}{2} \right) = y \). Then, \( \sin y = -\frac{1}{2} \).
We know that the range of the principal value branch of \( \sin^{-1} \) is \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \).
\[ \sin \left( \frac{\pi}{6} \right) = \frac{1}{2} \]
\[ \Rightarrow -\sin \left( \frac{\pi}{6} \right) = -\frac{1}{2} \]
Using the property \( \sin(-x) = -\sin x \):
\[ \sin \left( -\frac{\pi}{6} \right) = -\frac{1}{2} \]
Since \( -\frac{\pi}{6} \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \), the principal value is \( -\frac{\pi}{6} \).
Therefore, the principal value of \( \sin^{-1} \left( -\frac{1}{2} \right) \) is \( -\frac{\pi}{6} \).
Q2
Find the principal value of \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \).▼
Solution:
Let \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) = y \). Then, \( \cos y = \frac{\sqrt{3}}{2} \).
We know that the range of the principal value branch of \( \cos^{-1} \) is \( [0, \pi] \).
\[ \cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} \]
Since \( \frac{\pi}{6} \in [0, \pi] \), the principal value is \( \frac{\pi}{6} \).
Therefore, the principal value of \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \) is \( \frac{\pi}{6} \).
Q3
Find the principal value of \( \text{cosec}^{-1} (2) \).▼
Solution:
Let \( \text{cosec}^{-1} (2) = y \). Then, \( \text{cosec } y = 2 \).
We know that the range of the principal value branch of \( \text{cosec}^{-1} \) is \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \).
\[ \text{cosec } \left( \frac{\pi}{6} \right) = 2 \]
Since \( \frac{\pi}{6} \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \), the principal value is \( \frac{\pi}{6} \).
Therefore, the principal value of \( \text{cosec}^{-1} (2) \) is \( \frac{\pi}{6} \).
Q4
Find the principal value of \( \tan^{-1} (-\sqrt{3}) \).▼
Solution:
Let \( \tan^{-1} (-\sqrt{3}) = y \). Then, \( \tan y = -\sqrt{3} \).
We know that the range of the principal value branch of \( \tan^{-1} \) is \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \).
\[ \tan \left( \frac{\pi}{3} \right) = \sqrt{3} \]
Using the property \( \tan(-x) = -\tan x \):
\[ \Rightarrow \tan \left( -\frac{\pi}{3} \right) = -\sqrt{3} \]
Since \( -\frac{\pi}{3} \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \), the principal value is \( -\frac{\pi}{3} \).
Therefore, the principal value of \( \tan^{-1} (-\sqrt{3}) \) is \( -\frac{\pi}{3} \).
Q5
Find the principal value of \( \cos^{-1} \left( -\frac{1}{2} \right) \).▼
Solution:
Let \( \cos^{-1} \left( -\frac{1}{2} \right) = y \). Then, \( \cos y = -\frac{1}{2} \).
We know that the range of the principal value branch of \( \cos^{-1} \) is \( [0, \pi] \).
\[ \cos \left( \frac{\pi}{3} \right) = \frac{1}{2} \]
Using the property \( \cos(\pi - x) = -\cos x \):
\[ \begin{aligned} \cos \left( \pi - \frac{\pi}{3} \right) &= -\frac{1}{2} \\ \cos \left( \frac{2\pi}{3} \right) &= -\frac{1}{2} \end{aligned} \]
Since \( \frac{2\pi}{3} \in [0, \pi] \), the principal value is \( \frac{2\pi}{3} \).
Therefore, the principal value of \( \cos^{-1} \left( -\frac{1}{2} \right) \) is \( \frac{2\pi}{3} \).
Q6
Find the principal value of \( \tan^{-1} (-1) \).▼
Solution:
Let \( \tan^{-1} (-1) = y \). Then, \( \tan y = -1 \).
We know that the range of the principal value branch of \( \tan^{-1} \) is \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \).
\[ \tan \left( \frac{\pi}{4} \right) = 1 \]
Using \( \tan(-x) = -\tan x \):
\[ \tan \left( -\frac{\pi}{4} \right) = -1 \]
Therefore, the principal value of \( \tan^{-1} (-1) \) is \( -\frac{\pi}{4} \).
Q7
Find the principal value of \( \sec^{-1} \left( \frac{2}{\sqrt{3}} \right) \).▼
Solution:
Let \( \sec^{-1} \left( \frac{2}{\sqrt{3}} \right) = y \). Then, \( \sec y = \frac{2}{\sqrt{3}} \).
The range of the principal value branch of \( \sec^{-1} \) is \( [0, \pi] - \left\{ \frac{\pi}{2} \right\} \).
\[ \sec \left( \frac{\pi}{6} \right) = \frac{2}{\sqrt{3}} \]
Since \( \frac{\pi}{6} \in [0, \pi] - \left\{ \frac{\pi}{2} \right\} \), the principal value is \( \frac{\pi}{6} \).
Therefore, the principal value is \( \frac{\pi}{6} \).
Q8
Find the principal value of \( \cot^{-1} (\sqrt{3}) \).▼
Solution:
Let \( \cot^{-1} (\sqrt{3}) = y \). Then, \( \cot y = \sqrt{3} \).
The range of the principal value branch of \( \cot^{-1} \) is \( (0, \pi) \).
\[ \cot \left( \frac{\pi}{6} \right) = \sqrt{3} \]
Since \( \frac{\pi}{6} \in (0, \pi) \), the principal value is \( \frac{\pi}{6} \).
Therefore, the principal value is \( \frac{\pi}{6} \).
Q9
Find the principal value of \( \cos^{-1} \left( -\frac{1}{\sqrt{2}} \right) \).▼
Solution:
Let \( \cos^{-1} \left( -\frac{1}{\sqrt{2}} \right) = y \). Then, \( \cos y = -\frac{1}{\sqrt{2}} \).
The range of the principal value branch of \( \cos^{-1} \) is \( [0, \pi] \).
\[ \cos \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \]
Using \( \cos(\pi - x) = -\cos x \):
\[ \begin{aligned} \cos \left( \pi - \frac{\pi}{4} \right) &= -\frac{1}{\sqrt{2}} \\ \cos \left( \frac{3\pi}{4} \right) &= -\frac{1}{\sqrt{2}} \end{aligned} \]
Since \( \frac{3\pi}{4} \in [0, \pi] \), the principal value is \( \frac{3\pi}{4} \).
Therefore, the principal value is \( \frac{3\pi}{4} \).
Q10
Find the principal value of \( \text{cosec}^{-1} (-\sqrt{2}) \).▼
Solution:
Let \( \text{cosec}^{-1} (-\sqrt{2}) = y \). Then, \( \text{cosec } y = -\sqrt{2} \).
The range of the principal value branch of \( \text{cosec}^{-1} \) is \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \).
\[ \text{cosec } \left( \frac{\pi}{4} \right) = \sqrt{2} \]
Using \( \text{cosec}(-x) = -\text{cosec } x \):
\[ \text{cosec } \left( -\frac{\pi}{4} \right) = -\sqrt{2} \]
Since \( -\frac{\pi}{4} \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \), the principal value is \( -\frac{\pi}{4} \).
Therefore, the principal value is \( -\frac{\pi}{4} \).
Q11
Find the value of \( \tan^{-1}(1) + \cos^{-1} \left( -\frac{1}{2} \right) + \sin^{-1} \left( -\frac{1}{2} \right) \).▼
Solution:
Let us find the principal values individually:
1. \( \tan^{-1}(1) = \frac{\pi}{4} \)
2. \( \cos^{-1} \left( -\frac{1}{2} \right) = \pi - \cos^{-1} \left( \frac{1}{2} \right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \)
3. \( \sin^{-1} \left( -\frac{1}{2} \right) = -\sin^{-1} \left( \frac{1}{2} \right) = -\frac{\pi}{6} \)
Now, substitute these values into the expression:
\[ \begin{aligned} &= \frac{\pi}{4} + \frac{2\pi}{3} + \left( -\frac{\pi}{6} \right) \\ &= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6} \\ &= \frac{3\pi + 8\pi - 2\pi}{12} \quad (\text{LCM of 4, 3, 6 is 12}) \\ &= \frac{9\pi}{12} \\ &= \frac{3\pi}{4} \end{aligned} \]
Therefore, the value of the expression is \( \frac{3\pi}{4} \).
Q12
Find the value of \( \cos^{-1} \left( \frac{1}{2} \right) + 2 \sin^{-1} \left( \frac{1}{2} \right) \).▼
Solution:
1. \( \cos^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{3} \)
2. \( \sin^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{6} \)
Substitute these values into the expression:
\[ \begin{aligned} &= \frac{\pi}{3} + 2 \left( \frac{\pi}{6} \right) \\ &= \frac{\pi}{3} + \frac{\pi}{3} \\ &= \frac{2\pi}{3} \end{aligned} \]
Therefore, the value of the expression is \( \frac{2\pi}{3} \).
Q13
If \( \sin^{-1} x = y \), then:- \( 0 \leq y \leq \pi \)
- \( -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \)
- \( 0 < y < \pi \)
- \( -\frac{\pi}{2} < y < \frac{\pi}{2} \)
▼
- \( 0 \leq y \leq \pi \)
- \( -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \)
- \( 0 < y < \pi \)
- \( -\frac{\pi}{2} < y < \frac{\pi}{2} \)
Answer: (B)
Solution:
Given \( \sin^{-1} x = y \).
We know that the range of the principal value branch of \( \sin^{-1} \) is \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \).
Therefore, \( -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \).
Q14
\( \tan^{-1} \sqrt{3} - \sec^{-1} (-2) \) is equal to:- \( \pi \)
- \( -\frac{\pi}{3} \)
- \( \frac{\pi}{3} \)
- \( \frac{2\pi}{3} \)
▼
- \( \pi \)
- \( -\frac{\pi}{3} \)
- \( \frac{\pi}{3} \)
- \( \frac{2\pi}{3} \)
Answer: (B)
Solution:
1. \( \tan^{-1} \sqrt{3} = \frac{\pi}{3} \)
2. For \( \sec^{-1} (-2) \): Let \( \sec^{-1} (-2) = y \Rightarrow \sec y = -2 \). We know \( \sec \left( \frac{\pi}{3} \right) = 2 \). Using \( \sec(\pi - x) = -\sec x \): \( \sec \left( \pi - \frac{\pi}{3} \right) = -2 \Rightarrow \sec \left( \frac{2\pi}{3} \right) = -2 \). So, \( \sec^{-1} (-2) = \frac{2\pi}{3} \).
Now, substitute these values:
\[ \begin{aligned} &= \frac{\pi}{3} - \frac{2\pi}{3} \\ &= -\frac{\pi}{3} \end{aligned} \]
Therefore, the correct answer is (B).
