Class 12-NCERT Solutions-Chapter-03-Matrices-Ex 3.1

NCERT Solutions Class-12-Chapter-3-Matrices

Excercise-3.1

Note: A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements or the entries of the matrix.

Q1
In the matrix \( A = \begin{bmatrix} 2 & 5 & 19 & -7 \\ 35 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17 \end{bmatrix} \), write:
(i) The order of the matrix,
(ii) The number of elements,
(iii) Write the elements \( a_{13}, a_{21}, a_{33}, a_{24}, a_{23} \).

Solution:

(i) The order of the matrix:

Since the matrix has 3 rows and 4 columns, its order is \( 3 \times 4 \).

(ii) The number of elements:

Total elements = \( 3 \times 4 = 12 \).

(iii) The specific elements:

By comparing positions in the matrix:

  • \( a_{13} \) (1st row, 3rd column) = 19
  • \( a_{21} \) (2nd row, 1st column) = 35
  • \( a_{33} \) (3rd row, 3rd column) = -5
  • \( a_{24} \) (2nd row, 4th column) = 12
  • \( a_{23} \) (2nd row, 3rd column) = \( \frac{5}{2} \)
Q2
If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

Solution:

Case 1: 24 Elements

We need to find ordered pairs \( (m, n) \) such that \( mn = 24 \), where \( m, n \) are natural numbers.

The possible orders are:

\( 1 \times 24, \quad 24 \times 1 \)

\( 2 \times 12, \quad 12 \times 2 \)

\( 3 \times 8, \quad 8 \times 3 \)

\( 4 \times 6, \quad 6 \times 4 \)

Case 2: 13 Elements

We need pairs \( (m, n) \) such that \( mn = 13 \). Since 13 is a prime number, the possible orders are:

\( 1 \times 13, \quad 13 \times 1 \)

Q3
If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

Solution:

Case 1: 18 Elements

We find pairs \( (m, n) \) such that \( mn = 18 \). The possible orders are:

\( 1 \times 18, \quad 18 \times 1 \)

\( 2 \times 9, \quad 9 \times 2 \)

\( 3 \times 6, \quad 6 \times 3 \)

Case 2: 5 Elements

Since 5 is a prime number, the possible orders are:

\( 1 \times 5, \quad 5 \times 1 \)

Q4
Construct a \( 2 \times 2 \) matrix \( A = [a_{ij}] \), whose elements are given by:
(i) \( a_{ij} = \frac{(i+j)^2}{2} \)
(ii) \( a_{ij} = \frac{i}{j} \)
(iii) \( a_{ij} = \frac{(i+2j)^2}{2} \)

Solution:

A \( 2 \times 2 \) matrix is given by \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \).

(i) \( a_{ij} = \frac{(i+j)^2}{2} \)

  • \( a_{11} = \frac{(1+1)^2}{2} = \frac{4}{2} = 2 \)
  • \( a_{12} = \frac{(1+2)^2}{2} = \frac{9}{2} \)
  • \( a_{21} = \frac{(2+1)^2}{2} = \frac{9}{2} \)
  • \( a_{22} = \frac{(2+2)^2}{2} = \frac{16}{2} = 8 \)

Thus, \( A = \begin{bmatrix} 2 & \frac{9}{2} \\ \frac{9}{2} & 8 \end{bmatrix} \).


(ii) \( a_{ij} = \frac{i}{j} \)

  • \( a_{11} = \frac{1}{1} = 1 \)
  • \( a_{12} = \frac{1}{2} \)
  • \( a_{21} = \frac{2}{1} = 2 \)
  • \( a_{22} = \frac{2}{2} = 1 \)

Thus, \( A = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix} \).


(iii) \( a_{ij} = \frac{(i+2j)^2}{2} \)

  • \( a_{11} = \frac{(1+2(1))^2}{2} = \frac{9}{2} \)
  • \( a_{12} = \frac{(1+2(2))^2}{2} = \frac{25}{2} \)
  • \( a_{21} = \frac{(2+2(1))^2}{2} = \frac{16}{2} = 8 \)
  • \( a_{22} = \frac{(2+2(2))^2}{2} = \frac{36}{2} = 18 \)

Thus, \( A = \begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix} \).

Q5
Construct a \( 3 \times 4 \) matrix, whose elements are given by:
(i) \( a_{ij} = \frac{1}{2} |-3i + j| \)
(ii) \( a_{ij} = 2i - j \)

Solution:

A \( 3 \times 4 \) matrix has 3 rows and 4 columns.

(i) \( a_{ij} = \frac{1}{2} |-3i + j| \)

Calculations for elements:

  • \( a_{11} = \frac{1}{2}|-3(1)+1| = 1 \), \( a_{12} = \frac{1}{2}|-3(1)+2| = \frac{1}{2} \), \( a_{13} = 0 \), \( a_{14} = \frac{1}{2} \)
  • \( a_{21} = \frac{1}{2}|-3(2)+1| = \frac{5}{2} \), \( a_{22} = 2 \), \( a_{23} = \frac{3}{2} \), \( a_{24} = 1 \)
  • \( a_{31} = \frac{1}{2}|-3(3)+1| = 4 \), \( a_{32} = \frac{7}{2} \), \( a_{33} = 3 \), \( a_{34} = \frac{5}{2} \)

Therefore, \( A = \begin{bmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2} \end{bmatrix} \).


(ii) \( a_{ij} = 2i - j \)

Calculations for elements:

  • \( a_{11} = 2(1)-1 = 1 \), \( a_{12} = 0 \), \( a_{13} = -1 \), \( a_{14} = -2 \)
  • \( a_{21} = 2(2)-1 = 3 \), \( a_{22} = 2 \), \( a_{23} = 1 \), \( a_{24} = 0 \)
  • \( a_{31} = 2(3)-1 = 5 \), \( a_{32} = 4 \), \( a_{33} = 3 \), \( a_{34} = 2 \)

Therefore, \( A = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2 \end{bmatrix} \).

Q6
Find the values of \( x, y \) and \( z \) from the following equations:
(i) \( \begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix} \)
(ii) \( \begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix} \)
(iii) \( \begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix} \)

Solution:

(i) By equating corresponding elements:

\( y = 4 \), \( z = 3 \), \( x = 1 \).


(ii) By equating corresponding elements:

\( x+y = 6 \) ...(1)

\( 5+z = 5 \Rightarrow z = 0 \)

\( xy = 8 \) ...(2)

From (1), \( y = 6-x \). Substitute into (2):

\( x(6-x) = 8 \Rightarrow 6x - x^2 = 8 \Rightarrow x^2 - 6x + 8 = 0 \).

\( (x-4)(x-2) = 0 \Rightarrow x=4 \) or \( x=2 \).

If \( x=4, y=2 \). If \( x=2, y=4 \).

Therefore, \( x=4, y=2, z=0 \) or \( x=2, y=4, z=0 \).


(iii) By equating corresponding elements:

\( x+y+z = 9 \) ...(1)

\( x+z = 5 \) ...(2)

\( y+z = 7 \) ...(3)

Substitute (3) into (1): \( x + 7 = 9 \Rightarrow x = 2 \).

Substitute (2) into (1): \( 5 + y = 9 \Rightarrow y = 4 \).

Substitute values of x and y into (1): \( 2 + 4 + z = 9 \Rightarrow z = 3 \).

Therefore, \( x=2, y=4, z=3 \).

Q7
Find the value of \( a, b, c \) and \( d \) from the equation: \[ \begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix} \]

Solution:

Equating corresponding elements:

  1. \( a-b = -1 \)
  2. \( 2a-b = 0 \Rightarrow b = 2a \)
  3. \( 2a+c = 5 \)
  4. \( 3c+d = 13 \)

Substitute (2) into (1): \( a - 2a = -1 \Rightarrow -a = -1 \Rightarrow a = 1 \).

Then \( b = 2(1) = 2 \).

Substitute \( a \) into (3): \( 2(1) + c = 5 \Rightarrow c = 3 \).

Substitute \( c \) into (4): \( 3(3) + d = 13 \Rightarrow 9 + d = 13 \Rightarrow d = 4 \).

Therefore, \( a=1, b=2, c=3, d=4 \).

Q8
\( A = [a_{ij}]_{m \times n} \) is a square matrix, if
  1. \( m < n \)
  2. \( m > n \)
  3. \( m = n \)
  4. None of these

Answer: (C)

Solution:

A matrix is said to be a square matrix if the number of rows is equal to the number of columns.

Therefore, \( m = n \).

Q9
Which of the given values of \( x \) and \( y \) make the following pair of matrices equal \[ \begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix}, \begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix} \]
  1. \( x = \frac{-1}{3}, y = 7 \)
  2. Not possible to find
  3. \( y = 7, x = \frac{-2}{3} \)
  4. \( x = \frac{-1}{3}, y = \frac{-2}{3} \)

Answer: (B)

Solution:

Equating corresponding elements:

\( 3x + 7 = 0 \Rightarrow x = -\frac{7}{3} \)

\( 2 - 3x = 4 \Rightarrow -3x = 2 \Rightarrow x = -\frac{2}{3} \)

Since we get two different values for \( x \), it is not possible for the matrices to be equal.

Q10
The number of all possible matrices of order \( 3 \times 3 \) with each entry 0 or 1 is:
  1. 27
  2. 18
  3. 81
  4. 512

Answer: (D)

Solution:

A \( 3 \times 3 \) matrix has \( 3 \times 3 = 9 \) elements.

Each element can be either 0 or 1 (2 choices).

Total possible matrices = \( 2^9 = 512 \).

Scroll to Top