NCERT Solutions Class-12-Chapter-3-Matrices
Excercise-3.1
Note: A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements or the entries of the matrix.
Q1
In the matrix \( A = \begin{bmatrix} 2 & 5 & 19 & -7 \\ 35 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17 \end{bmatrix} \), write:
(i) The order of the matrix,
(ii) The number of elements,
(iii) Write the elements \( a_{13}, a_{21}, a_{33}, a_{24}, a_{23} \).▼
(i) The order of the matrix,
(ii) The number of elements,
(iii) Write the elements \( a_{13}, a_{21}, a_{33}, a_{24}, a_{23} \).
Solution:
(i) The order of the matrix:
Since the matrix has 3 rows and 4 columns, its order is \( 3 \times 4 \).
(ii) The number of elements:
Total elements = \( 3 \times 4 = 12 \).
(iii) The specific elements:
By comparing positions in the matrix:
- \( a_{13} \) (1st row, 3rd column) = 19
- \( a_{21} \) (2nd row, 1st column) = 35
- \( a_{33} \) (3rd row, 3rd column) = -5
- \( a_{24} \) (2nd row, 4th column) = 12
- \( a_{23} \) (2nd row, 3rd column) = \( \frac{5}{2} \)
Q2
If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?▼
Solution:
Case 1: 24 Elements
We need to find ordered pairs \( (m, n) \) such that \( mn = 24 \), where \( m, n \) are natural numbers.
The possible orders are:
\( 1 \times 24, \quad 24 \times 1 \)
\( 2 \times 12, \quad 12 \times 2 \)
\( 3 \times 8, \quad 8 \times 3 \)
\( 4 \times 6, \quad 6 \times 4 \)
Case 2: 13 Elements
We need pairs \( (m, n) \) such that \( mn = 13 \). Since 13 is a prime number, the possible orders are:
\( 1 \times 13, \quad 13 \times 1 \)
Q3
If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?▼
Solution:
Case 1: 18 Elements
We find pairs \( (m, n) \) such that \( mn = 18 \). The possible orders are:
\( 1 \times 18, \quad 18 \times 1 \)
\( 2 \times 9, \quad 9 \times 2 \)
\( 3 \times 6, \quad 6 \times 3 \)
Case 2: 5 Elements
Since 5 is a prime number, the possible orders are:
\( 1 \times 5, \quad 5 \times 1 \)
Q4
Construct a \( 2 \times 2 \) matrix \( A = [a_{ij}] \), whose elements are given by:
(i) \( a_{ij} = \frac{(i+j)^2}{2} \)
(ii) \( a_{ij} = \frac{i}{j} \)
(iii) \( a_{ij} = \frac{(i+2j)^2}{2} \)▼
(i) \( a_{ij} = \frac{(i+j)^2}{2} \)
(ii) \( a_{ij} = \frac{i}{j} \)
(iii) \( a_{ij} = \frac{(i+2j)^2}{2} \)
Solution:
A \( 2 \times 2 \) matrix is given by \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \).
(i) \( a_{ij} = \frac{(i+j)^2}{2} \)
- \( a_{11} = \frac{(1+1)^2}{2} = \frac{4}{2} = 2 \)
- \( a_{12} = \frac{(1+2)^2}{2} = \frac{9}{2} \)
- \( a_{21} = \frac{(2+1)^2}{2} = \frac{9}{2} \)
- \( a_{22} = \frac{(2+2)^2}{2} = \frac{16}{2} = 8 \)
Thus, \( A = \begin{bmatrix} 2 & \frac{9}{2} \\ \frac{9}{2} & 8 \end{bmatrix} \).
(ii) \( a_{ij} = \frac{i}{j} \)
- \( a_{11} = \frac{1}{1} = 1 \)
- \( a_{12} = \frac{1}{2} \)
- \( a_{21} = \frac{2}{1} = 2 \)
- \( a_{22} = \frac{2}{2} = 1 \)
Thus, \( A = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix} \).
(iii) \( a_{ij} = \frac{(i+2j)^2}{2} \)
- \( a_{11} = \frac{(1+2(1))^2}{2} = \frac{9}{2} \)
- \( a_{12} = \frac{(1+2(2))^2}{2} = \frac{25}{2} \)
- \( a_{21} = \frac{(2+2(1))^2}{2} = \frac{16}{2} = 8 \)
- \( a_{22} = \frac{(2+2(2))^2}{2} = \frac{36}{2} = 18 \)
Thus, \( A = \begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix} \).
Q5
Construct a \( 3 \times 4 \) matrix, whose elements are given by:
(i) \( a_{ij} = \frac{1}{2} |-3i + j| \)
(ii) \( a_{ij} = 2i - j \)▼
(i) \( a_{ij} = \frac{1}{2} |-3i + j| \)
(ii) \( a_{ij} = 2i - j \)
Solution:
A \( 3 \times 4 \) matrix has 3 rows and 4 columns.
(i) \( a_{ij} = \frac{1}{2} |-3i + j| \)
Calculations for elements:
- \( a_{11} = \frac{1}{2}|-3(1)+1| = 1 \), \( a_{12} = \frac{1}{2}|-3(1)+2| = \frac{1}{2} \), \( a_{13} = 0 \), \( a_{14} = \frac{1}{2} \)
- \( a_{21} = \frac{1}{2}|-3(2)+1| = \frac{5}{2} \), \( a_{22} = 2 \), \( a_{23} = \frac{3}{2} \), \( a_{24} = 1 \)
- \( a_{31} = \frac{1}{2}|-3(3)+1| = 4 \), \( a_{32} = \frac{7}{2} \), \( a_{33} = 3 \), \( a_{34} = \frac{5}{2} \)
Therefore, \( A = \begin{bmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2} \end{bmatrix} \).
(ii) \( a_{ij} = 2i - j \)
Calculations for elements:
- \( a_{11} = 2(1)-1 = 1 \), \( a_{12} = 0 \), \( a_{13} = -1 \), \( a_{14} = -2 \)
- \( a_{21} = 2(2)-1 = 3 \), \( a_{22} = 2 \), \( a_{23} = 1 \), \( a_{24} = 0 \)
- \( a_{31} = 2(3)-1 = 5 \), \( a_{32} = 4 \), \( a_{33} = 3 \), \( a_{34} = 2 \)
Therefore, \( A = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2 \end{bmatrix} \).
Q6
Find the values of \( x, y \) and \( z \) from the following equations:
(i) \( \begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix} \)
(ii) \( \begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix} \)
(iii) \( \begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix} \)▼
(i) \( \begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix} \)
(ii) \( \begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix} \)
(iii) \( \begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix} \)
Solution:
(i) By equating corresponding elements:
\( y = 4 \), \( z = 3 \), \( x = 1 \).
(ii) By equating corresponding elements:
\( x+y = 6 \) ...(1)
\( 5+z = 5 \Rightarrow z = 0 \)
\( xy = 8 \) ...(2)
From (1), \( y = 6-x \). Substitute into (2):
\( x(6-x) = 8 \Rightarrow 6x - x^2 = 8 \Rightarrow x^2 - 6x + 8 = 0 \).
\( (x-4)(x-2) = 0 \Rightarrow x=4 \) or \( x=2 \).
If \( x=4, y=2 \). If \( x=2, y=4 \).
Therefore, \( x=4, y=2, z=0 \) or \( x=2, y=4, z=0 \).
(iii) By equating corresponding elements:
\( x+y+z = 9 \) ...(1)
\( x+z = 5 \) ...(2)
\( y+z = 7 \) ...(3)
Substitute (3) into (1): \( x + 7 = 9 \Rightarrow x = 2 \).
Substitute (2) into (1): \( 5 + y = 9 \Rightarrow y = 4 \).
Substitute values of x and y into (1): \( 2 + 4 + z = 9 \Rightarrow z = 3 \).
Therefore, \( x=2, y=4, z=3 \).
Q7
Find the value of \( a, b, c \) and \( d \) from the equation:
\[ \begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix} \]▼
Solution:
Equating corresponding elements:
- \( a-b = -1 \)
- \( 2a-b = 0 \Rightarrow b = 2a \)
- \( 2a+c = 5 \)
- \( 3c+d = 13 \)
Substitute (2) into (1): \( a - 2a = -1 \Rightarrow -a = -1 \Rightarrow a = 1 \).
Then \( b = 2(1) = 2 \).
Substitute \( a \) into (3): \( 2(1) + c = 5 \Rightarrow c = 3 \).
Substitute \( c \) into (4): \( 3(3) + d = 13 \Rightarrow 9 + d = 13 \Rightarrow d = 4 \).
Therefore, \( a=1, b=2, c=3, d=4 \).
Q8
\( A = [a_{ij}]_{m \times n} \) is a square matrix, if- \( m < n \)
- \( m > n \)
- \( m = n \)
- None of these
▼
- \( m < n \)
- \( m > n \)
- \( m = n \)
- None of these
Answer: (C)
Solution:
A matrix is said to be a square matrix if the number of rows is equal to the number of columns.
Therefore, \( m = n \).
Q9
Which of the given values of \( x \) and \( y \) make the following pair of matrices equal
\[ \begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix}, \begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix} \]- \( x = \frac{-1}{3}, y = 7 \)
- Not possible to find
- \( y = 7, x = \frac{-2}{3} \)
- \( x = \frac{-1}{3}, y = \frac{-2}{3} \)
▼
- \( x = \frac{-1}{3}, y = 7 \)
- Not possible to find
- \( y = 7, x = \frac{-2}{3} \)
- \( x = \frac{-1}{3}, y = \frac{-2}{3} \)
Answer: (B)
Solution:
Equating corresponding elements:
\( 3x + 7 = 0 \Rightarrow x = -\frac{7}{3} \)
\( 2 - 3x = 4 \Rightarrow -3x = 2 \Rightarrow x = -\frac{2}{3} \)
Since we get two different values for \( x \), it is not possible for the matrices to be equal.
Q10
The number of all possible matrices of order \( 3 \times 3 \) with each entry 0 or 1 is:- 27
- 18
- 81
- 512
▼
- 27
- 18
- 81
- 512
Answer: (D)
Solution:
A \( 3 \times 3 \) matrix has \( 3 \times 3 = 9 \) elements.
Each element can be either 0 or 1 (2 choices).
Total possible matrices = \( 2^9 = 512 \).
