NCERT Solutions Class-12-Chapter-7-Integrals
Excercise-7.7
Note: This exercise utilizes specific standard integral formulas for expressions of the form \( \sqrt{x^2 \pm a^2} \) and \( \sqrt{a^2 - x^2} \). The method of "completing the square" is used to transform quadratic expressions into these standard forms.
Q1
Integrate the function: \( \sqrt{4-x^2} \)▼
Solution:
This is of the form \( \sqrt{a^2-x^2} \) where \( a=2 \).
Using the formula \( \int \sqrt{a^2-x^2} \, dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + C \):
\[ \begin{aligned} \int \sqrt{2^2-x^2} \, dx &= \frac{x}{2}\sqrt{4-x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2} + C \\ &= \frac{x}{2}\sqrt{4-x^2} + 2\sin^{-1}\frac{x}{2} + C \end{aligned} \]
Q2
Integrate the function: \( \sqrt{1-4x^2} \)▼
Solution:
Rewrite as \( \sqrt{1-(2x)^2} \). Let \( 2x = t \Rightarrow 2dx = dt \Rightarrow dx = \frac{dt}{2} \).
\[ \begin{aligned} \int \sqrt{1-t^2} \frac{dt}{2} &= \frac{1}{2} \left[ \frac{t}{2}\sqrt{1-t^2} + \frac{1}{2}\sin^{-1} t \right] + C \\ &= \frac{1}{2} \left[ \frac{2x}{2}\sqrt{1-4x^2} + \frac{1}{2}\sin^{-1}(2x) \right] + C \\ &= \frac{x}{2}\sqrt{1-4x^2} + \frac{1}{4}\sin^{-1}(2x) + C \end{aligned} \]
Q3
Integrate the function: \( \sqrt{x^2+4x+6} \)▼
Solution:
Complete the square: \( x^2+4x+6 = (x+2)^2 + 2 = (x+2)^2 + (\sqrt{2})^2 \).
Use formula \( \int \sqrt{x^2+a^2} \, dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| + C \).
Here \( X = x+2 \) and \( a = \sqrt{2} \).
\[ \begin{aligned} \int \sqrt{(x+2)^2+(\sqrt{2})^2} \, dx &= \frac{x+2}{2}\sqrt{x^2+4x+6} + \frac{2}{2}\log|x+2+\sqrt{x^2+4x+6}| + C \\ &= \frac{x+2}{2}\sqrt{x^2+4x+6} + \log|x+2+\sqrt{x^2+4x+6}| + C \end{aligned} \]
Q4
Integrate the function: \( \sqrt{x^2+4x+1} \)▼
Solution:
Complete the square: \( x^2+4x+1 = (x+2)^2 - 3 = (x+2)^2 - (\sqrt{3})^2 \).
Use formula \( \int \sqrt{x^2-a^2} \, dx = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\log|x+\sqrt{x^2-a^2}| + C \).
\[ \begin{aligned} \int \sqrt{(x+2)^2-(\sqrt{3})^2} \, dx &= \frac{x+2}{2}\sqrt{x^2+4x+1} - \frac{3}{2}\log|x+2+\sqrt{x^2+4x+1}| + C \end{aligned} \]
Q5
Integrate the function: \( \sqrt{1-4x-x^2} \)▼
Solution:
Complete the square: \( 1-(x^2+4x) = 1-(x^2+4x+4-4) = 1-((x+2)^2-4) = 5-(x+2)^2 \).
Integral is \( \int \sqrt{(\sqrt{5})^2 - (x+2)^2} \, dx \).
Use formula for \( \sqrt{a^2-x^2} \):
\[ \begin{aligned} &= \frac{x+2}{2}\sqrt{1-4x-x^2} + \frac{5}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{5}}\right) + C \end{aligned} \]
Q6
Integrate the function: \( \sqrt{x^2+4x-5} \)▼
Solution:
Complete the square: \( x^2+4x-5 = (x+2)^2 - 9 = (x+2)^2 - 3^2 \).
Use formula for \( \sqrt{x^2-a^2} \):
\[ \begin{aligned} \int \sqrt{(x+2)^2-3^2} \, dx &= \frac{x+2}{2}\sqrt{x^2+4x-5} - \frac{9}{2}\log|x+2+\sqrt{x^2+4x-5}| + C \end{aligned} \]
Q7
Integrate the function: \( \sqrt{1+3x-x^2} \)▼
Solution:
Complete the square: \( 1-(x^2-3x) = 1-(x^2-3x+\frac{9}{4}-\frac{9}{4}) = 1-((x-\frac{3}{2})^2-\frac{13}{4}) = \frac{13}{4}-(x-\frac{3}{2})^2 \).
Integral is \( \int \sqrt{(\frac{\sqrt{13}}{2})^2 - (x-\frac{3}{2})^2} \, dx \).
\[ \begin{aligned} &= \frac{x-3/2}{2}\sqrt{1+3x-x^2} + \frac{13/4}{2}\sin^{-1}\left(\frac{x-3/2}{\sqrt{13}/2}\right) + C \\ &= \frac{2x-3}{4}\sqrt{1+3x-x^2} + \frac{13}{8}\sin^{-1}\left(\frac{2x-3}{\sqrt{13}}\right) + C \end{aligned} \]
Q8
Integrate the function: \( \sqrt{x^2+3x} \)▼
Solution:
Complete the square: \( x^2+3x = (x+\frac{3}{2})^2 - \frac{9}{4} \).
Integral is \( \int \sqrt{(x+\frac{3}{2})^2 - (\frac{3}{2})^2} \, dx \).
\[ \begin{aligned} &= \frac{x+3/2}{2}\sqrt{x^2+3x} - \frac{9/4}{2}\log|x+3/2+\sqrt{x^2+3x}| + C \\ &= \frac{2x+3}{4}\sqrt{x^2+3x} - \frac{9}{8}\log|x+\frac{3}{2}+\sqrt{x^2+3x}| + C \end{aligned} \]
Q9
Integrate the function: \( \sqrt{1+\frac{x^2}{9}} \)▼
Solution:
Rewrite: \( \sqrt{\frac{9+x^2}{9}} = \frac{1}{3}\sqrt{x^2+9} = \frac{1}{3}\sqrt{x^2+3^2} \).
\[ \begin{aligned} \frac{1}{3} \int \sqrt{x^2+3^2} \, dx &= \frac{1}{3} \left[ \frac{x}{2}\sqrt{x^2+9} + \frac{9}{2}\log|x+\sqrt{x^2+9}| \right] + C \\ &= \frac{x}{6}\sqrt{x^2+9} + \frac{3}{2}\log|x+\sqrt{x^2+9}| + C \end{aligned} \]
Q10
\( \int \sqrt{1+x^2} \, dx \) is equal to- \( \frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log|x+\sqrt{1+x^2}| + C \)
- \( \frac{2}{3}(1+x^2)^{3/2} + C \)
- \( \frac{2}{3}x(1+x^2)^{3/2} + C \)
- \( \frac{x^2}{2}\sqrt{1+x^2} + \frac{1}{2}x^2\log|x+\sqrt{1+x^2}| + C \)
▼
- \( \frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log|x+\sqrt{1+x^2}| + C \)
- \( \frac{2}{3}(1+x^2)^{3/2} + C \)
- \( \frac{2}{3}x(1+x^2)^{3/2} + C \)
- \( \frac{x^2}{2}\sqrt{1+x^2} + \frac{1}{2}x^2\log|x+\sqrt{1+x^2}| + C \)
Answer: (A)
Solution:
Using the standard formula \( \int \sqrt{x^2+a^2} \, dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| + C \) with \( a=1 \).
Result is \( \frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log|x+\sqrt{1+x^2}| + C \).
Q11
\( \int \sqrt{x^2-8x+7} \, dx \) is equal to- \( \frac{1}{2}(x-4)\sqrt{x^2-8x+7} + 9\log|x-4+\sqrt{x^2-8x+7}| + C \)
- \( \frac{1}{2}(x+4)\sqrt{x^2-8x+7} + 9\log|x+4+\sqrt{x^2-8x+7}| + C \)
- \( \frac{1}{2}(x-4)\sqrt{x^2-8x+7} - 3\sqrt{2}\log|x-4+\sqrt{x^2-8x+7}| + C \)
- \( \frac{1}{2}(x-4)\sqrt{x^2-8x+7} - \frac{9}{2}\log|x-4+\sqrt{x^2-8x+7}| + C \)
▼
- \( \frac{1}{2}(x-4)\sqrt{x^2-8x+7} + 9\log|x-4+\sqrt{x^2-8x+7}| + C \)
- \( \frac{1}{2}(x+4)\sqrt{x^2-8x+7} + 9\log|x+4+\sqrt{x^2-8x+7}| + C \)
- \( \frac{1}{2}(x-4)\sqrt{x^2-8x+7} - 3\sqrt{2}\log|x-4+\sqrt{x^2-8x+7}| + C \)
- \( \frac{1}{2}(x-4)\sqrt{x^2-8x+7} - \frac{9}{2}\log|x-4+\sqrt{x^2-8x+7}| + C \)
Answer: (D)
Solution:
Complete the square: \( x^2-8x+7 = (x-4)^2 - 16 + 7 = (x-4)^2 - 9 = (x-4)^2 - 3^2 \).
Using formula for \( \sqrt{x^2-a^2} \):
\[ \frac{x-4}{2}\sqrt{x^2-8x+7} - \frac{9}{2}\log|x-4+\sqrt{x^2-8x+7}| + C \]
