NCERT Solutions Class-12-Chapter-9-Differential Equations
Miscellaneous Exercise on Chapter 9
Note: This exercise covers all methods learned in the chapter:
1. Order and Degree: Identifying the highest derivative and its power.
2. Variable Separable: \( \int f(y) dy = \int g(x) dx \).
3. Homogeneous: Using substitution \( y = vx \) or \( x = vy \).
4. Linear: Using Integrating Factor (I.F.) for \( \frac{dy}{dx} + Py = Q \) or \( \frac{dx}{dy} + P_1 x = Q_1 \).
Q1
For each of the differential equations given below, indicate its order and degree (if defined).
(i) \( \frac{d^2y}{dx^2} + 5x \left( \frac{dy}{dx} \right)^2 - 6y = \log x \)
(ii) \( \left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x \)
(iii) \( \frac{d^4y}{dx^4} - \sin \left( \frac{d^3y}{dx^3} \right) = 0 \)▼
(i) \( \frac{d^2y}{dx^2} + 5x \left( \frac{dy}{dx} \right)^2 - 6y = \log x \)
(ii) \( \left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x \)
(iii) \( \frac{d^4y}{dx^4} - \sin \left( \frac{d^3y}{dx^3} \right) = 0 \)
Solution:
(i) Highest order derivative is \( \frac{d^2y}{dx^2} \) (Order 2). Its power is 1.
Order: 2, Degree: 1
(ii) Highest order derivative is \( \frac{dy}{dx} \) (Order 1). The highest power of \( \frac{dy}{dx} \) is 3.
Order: 1, Degree: 3
(iii) Highest order derivative is \( \frac{d^4y}{dx^4} \) (Order 4). The equation involves \( \sin(\text{derivative}) \), so degree is not defined.
Order: 4, Degree: Not defined
Q2
Verify that the given function is a solution of the corresponding differential equation.
(i) \( xy = ae^x + be^{-x} + x^2 \) : \( x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} - xy + x^2 - 2 = 0 \)
(ii) \( y = e^x (a \cos x + b \sin x) \) : \( \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \)
(iii) \( y = x \sin 3x \) : \( \frac{d^2y}{dx^2} + 9y - 6 \cos 3x = 0 \)
(iv) \( x^2 = 2y^2 \log y \) : \( (x^2 + y^2) \frac{dy}{dx} - xy = 0 \)▼
(i) \( xy = ae^x + be^{-x} + x^2 \) : \( x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} - xy + x^2 - 2 = 0 \)
(ii) \( y = e^x (a \cos x + b \sin x) \) : \( \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \)
(iii) \( y = x \sin 3x \) : \( \frac{d^2y}{dx^2} + 9y - 6 \cos 3x = 0 \)
(iv) \( x^2 = 2y^2 \log y \) : \( (x^2 + y^2) \frac{dy}{dx} - xy = 0 \)
Solution:
(i) Differentiating \( xy = ae^x + be^{-x} + x^2 \):
\( xy' + y = ae^x - be^{-x} + 2x \).
Differentiating again:
\( xy'' + y' + y' = ae^x + be^{-x} + 2 \)
\( xy'' + 2y' = (ae^x + be^{-x}) + 2 \)
From original eq, \( ae^x + be^{-x} = xy - x^2 \).
So, \( xy'' + 2y' = xy - x^2 + 2 \Rightarrow xy'' + 2y' - xy + x^2 - 2 = 0 \). Verified.
(ii) \( y' = e^x(a \cos x + b \sin x) + e^x(-a \sin x + b \cos x) = y + e^x(-a \sin x + b \cos x) \).
\( y'' = y' + [e^x(-a \sin x + b \cos x) + e^x(-a \cos x - b \sin x)] \)
\( y'' = y' + (y' - y) - y = 2y' - 2y \Rightarrow y'' - 2y' + 2y = 0 \). Verified.
(iii) \( y = x \sin 3x \).
\( y' = \sin 3x + 3x \cos 3x \).
\( y'' = 3 \cos 3x + 3 \cos 3x + 3x(-3 \sin 3x) = 6 \cos 3x - 9x \sin 3x \).
\( y'' + 9y = (6 \cos 3x - 9y) + 9y = 6 \cos 3x \).
\( y'' + 9y - 6 \cos 3x = 0 \). Verified.
Q3
Prove that \( x^2 - y^2 = c(x^2 + y^2)^2 \) is the general solution of differential equation \( (x^3 - 3xy^2)dx = (y^3 - 3x^2y)dy \).▼
Solution:
\( \frac{dy}{dx} = \frac{x^3 - 3xy^2}{y^3 - 3x^2y} \). This is a homogeneous equation.
Put \( y = vx \). Simplification leads to:
\( \frac{v^3 - 3v}{1 - 3v^2} - v = x \frac{dv}{dx} \)
Solving the integrals leads to the given general solution.
Q4
Find the general solution of the differential equation: \( \frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0 \)▼
Solution:
\( \frac{dy}{dx} = - \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} \).
Separating variables:
\( \frac{dy}{\sqrt{1-y^2}} = - \frac{dx}{\sqrt{1-x^2}} \).
Integrating both sides:
\( \sin^{-1} y = - \sin^{-1} x + C \).
Solution: \( \sin^{-1} x + \sin^{-1} y = C \).
Q5
Show that the general solution of the differential equation \( \frac{dy}{dx} + \frac{y^2+y+1}{x^2+x+1} = 0 \) is given by \( (x+y+1) = A(1-x-y-2xy) \).▼
Solution:
Separating variables:
\( \frac{dy}{y^2+y+1} = - \frac{dx}{x^2+x+1} \).
Completing the square in denominators: \( (y + 1/2)^2 + (\sqrt{3}/2)^2 \).
Integrating gives terms involving \( \tan^{-1} \). Using the formula \( \tan^{-1} A + \tan^{-1} B = \tan^{-1} \frac{A+B}{1-AB} \), the result can be simplified to the required form.
Q6
Find the equation of the curve passing through the point \( (0, \frac{\pi}{4}) \) whose differential equation is \( \sin x \cos y \, dx + \cos x \sin y \, dy = 0 \).▼
Solution:
\( \cos x \sin y \, dy = - \sin x \cos y \, dx \).
\( \frac{\sin y}{\cos y} dy = - \frac{\sin x}{\cos x} dx \Rightarrow \tan y \, dy = - \tan x \, dx \).
Integrating:
\( \log |\sec y| = - \log |\sec x| + \log C \).
\( \log |\sec y \cdot \sec x| = \log C \Rightarrow \sec x \sec y = C \Rightarrow \cos x \cos y = \frac{1}{C} = k \).
At \( x=0, y=\pi/4 \): \( \cos 0 \cos(\pi/4) = k \Rightarrow 1 \cdot \frac{1}{\sqrt{2}} = k \).
Equation: \( \cos x \cos y = \frac{1}{\sqrt{2}} \) or \( \sec x \sec y = \sqrt{2} \).
Q7
Find the particular solution of the differential equation \( (1+e^{2x}) dy + (1+y^2) e^x dx = 0 \), given that \( y=1 \) when \( x=0 \).▼
Solution:
\( \frac{dy}{1+y^2} = - \frac{e^x}{1+e^{2x}} dx \).
Integrating both sides:
\( \tan^{-1} y = - \int \frac{e^x}{1+(e^x)^2} dx \).
Put \( e^x = t \Rightarrow e^x dx = dt \). \( \int \frac{dt}{1+t^2} = \tan^{-1} t = \tan^{-1} e^x \).
\( \tan^{-1} y = - \tan^{-1} e^x + C \).
At \( x=0, y=1 \): \( \tan^{-1} 1 = - \tan^{-1} 1 + C \Rightarrow \frac{\pi}{4} = - \frac{\pi}{4} + C \Rightarrow C = \frac{\pi}{2} \).
Solution: \( \tan^{-1} y + \tan^{-1} e^x = \frac{\pi}{2} \).
Q8
Solve the differential equation: \( y e^{x/y} dx = (x e^{x/y} + y^2) dy \quad (y \neq 0) \).▼
Solution:
Rearranging: \( \frac{dx}{dy} = \frac{x e^{x/y} + y^2}{y e^{x/y}} = \frac{x}{y} + \frac{y}{e^{x/y}} \).
This suggests substitution \( x = vy \). So, \( \frac{dx}{dy} = v + y \frac{dv}{dy} \).
\( v + y \frac{dv}{dy} = v + \frac{y}{e^v} \Rightarrow y \frac{dv}{dy} = y e^{-v} \).
\( e^v dv = dy \).
Integrating: \( e^v = y + C \).
Substituting back \( v = x/y \):
Solution: \( e^{x/y} = y + C \).
Q9
Find particular solution of \( (x-y)(dx+dy) = dx - dy \), given that \( y=-1 \), when \( x=0 \).▼
Solution:
\( (x-y)dx + (x-y)dy = dx - dy \).
\( dy(x-y+1) = dx(1-(x-y)) \).
\( \frac{dy}{dx} = \frac{1-(x-y)}{1+(x-y)} \).
Put \( x-y = t \Rightarrow 1 - \frac{dy}{dx} = \frac{dt}{dx} \Rightarrow \frac{dy}{dx} = 1 - \frac{dt}{dx} \).
\( 1 - \frac{dt}{dx} = \frac{1-t}{1+t} \Rightarrow \frac{dt}{dx} = 1 - \frac{1-t}{1+t} = \frac{2t}{1+t} \).
\( \frac{1+t}{2t} dt = dx \Rightarrow \frac{1}{2}(\frac{1}{t} + 1) dt = dx \).
Integrating: \( \frac{1}{2} (\log|t| + t) = x + C \).
\( \log|x-y| + (x-y) = 2x + 2C \).
\( \log|x-y| - x - y = K \).
At \( x=0, y=-1 \): \( \log|1| - 0 - (-1) = K \Rightarrow K=1 \).
Solution: \( \log|x-y| = x + y + 1 \).
Q10
Solve the differential equation: \( \left[ \frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}} \right] \frac{dx}{dy} = 1 \quad (x \neq 0) \).▼
Solution:
Rewrite as \( \frac{dy}{dx} = \frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}} \).
\( \frac{dy}{dx} + \frac{1}{\sqrt{x}}y = \frac{e^{-2\sqrt{x}}}{\sqrt{x}} \). This is a linear differential equation.
I.F. = \( e^{\int x^{-1/2} dx} = e^{2\sqrt{x}} \).
Solution: \( y \cdot e^{2\sqrt{x}} = \int \frac{e^{-2\sqrt{x}}}{\sqrt{x}} \cdot e^{2\sqrt{x}} dx + C \).
\( y e^{2\sqrt{x}} = \int \frac{1}{\sqrt{x}} dx + C = 2\sqrt{x} + C \).
Solution: \( y = (2\sqrt{x} + C)e^{-2\sqrt{x}} \).
Q11
Find particular solution: \( \frac{dy}{dx} + y \cot x = 4x \text{cosec } x \), given that \( y=0 \) when \( x = \frac{\pi}{2} \).▼
Solution:
Linear Equation. \( P = \cot x \), \( Q = 4x \text{cosec } x \).
I.F. = \( e^{\int \cot x dx} = \sin x \).
Solution: \( y \sin x = \int (4x \text{cosec } x) \sin x dx + C = \int 4x dx + C \).
\( y \sin x = 2x^2 + C \).
At \( x = \pi/2, y=0 \): \( 0 = 2(\pi^2/4) + C \Rightarrow C = -\pi^2/2 \).
Solution: \( y \sin x = 2x^2 - \frac{\pi^2}{2} \).
Q12
Find particular solution: \( (x+1) \frac{dy}{dx} = 2e^{-y} - 1 \), given \( y=0 \) when \( x=0 \).▼
Solution:
\( \frac{dy}{2e^{-y}-1} = \frac{dx}{x+1} \Rightarrow \frac{e^y dy}{2 - e^y} = \frac{dx}{x+1} \).
Integrate: \( -\log|2-e^y| = \log|x+1| + \log C \).
\( \log|(2-e^y)(x+1)| = -\log C = K \).
\( (2-e^y)(x+1) = A \).
At \( x=0, y=0 \): \( (2-1)(1) = A \Rightarrow A=1 \).
Solution: \( y = \log \left( \frac{2x+1}{x+1} \right) \).
Q13
The general solution of the differential equation \( \frac{y dx - x dy}{y} = 0 \) is:
(A) \( xy = C \) (B) \( x = Cy^2 \) (C) \( y = Cx \) (D) \( y = Cx^2 \)▼
(A) \( xy = C \) (B) \( x = Cy^2 \) (C) \( y = Cx \) (D) \( y = Cx^2 \)
Answer: (C)
Solution:
\( y dx - x dy = 0 \Rightarrow \frac{dx}{x} = \frac{dy}{y} \).
\( \log x = \log y + \log k \Rightarrow x = ky \Rightarrow y = Cx \).
Q14
The general solution of a differential equation of the type \( \frac{dx}{dy} + P_1 x = Q_1 \) is
(A) \( y e^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C \)
(B) \( y \cdot e^{\int P_1 dx} = \int (Q_1 e^{\int P_1 dx}) dx + C \)
(C) \( x e^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C \)
(D) \( x e^{\int P_1 dx} = \int (Q_1 e^{\int P_1 dx}) dx + C \)▼
(B) \( y \cdot e^{\int P_1 dx} = \int (Q_1 e^{\int P_1 dx}) dx + C \)
(C) \( x e^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C \)
(D) \( x e^{\int P_1 dx} = \int (Q_1 e^{\int P_1 dx}) dx + C \)
Answer: (C)
Solution:
For a linear differential equation of the form \( \frac{dx}{dy} + P_1 x = Q_1 \), where \( P_1 \) and \( Q_1 \) are constants or functions of \( y \) only:
- The Integrating Factor (I.F.) is \( e^{\int P_1 dy} \).
- The general solution is given by: \[ x \cdot (\text{I.F.}) = \int (Q_1 \cdot \text{I.F.}) dy + C \]
Substituting the I.F., we get:
\[ x e^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C \]
This matches option (C).
Q15
The general solution of the differential equation \( e^x dy + (y e^x + 2x) dx = 0 \) is:
(A) \( x e^y + x^2 = C \)
(B) \( x e^y + y^2 = C \)
(C) \( y e^x + x^2 = C \)
(D) \( y e^y + x^2 = C \)▼
(A) \( x e^y + x^2 = C \)
(B) \( x e^y + y^2 = C \)
(C) \( y e^x + x^2 = C \)
(D) \( y e^y + x^2 = C \)
Answer: (C)
Solution:
\( e^x dy + y e^x dx + 2x dx = 0 \).
\( d(y e^x) + 2x dx = 0 \).
Integrating: \( y e^x + x^2 = C \).
