

CHAPTER-4 LINEAR EQUATIONS IN TWO VARIABLES

Exercise 4.1

Question 1: The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.

Solution: Let the cost of a notebook and a pen be x and y respectively.

Cost of notebook = $2 \times$ Cost of pen

$$x = 2y$$

$$x - 2y = 0$$

Question 2: Express the following linear equations in the form $ax + by + c = 0$ and indicate the values of a, b, c in each case:

(i) $2x + 3y = 9.3\bar{5}$

(ii) $x - \frac{y}{5} - 10 = 0$

(iii) $-2x + 3y = 6$

(iv) $x = 3y$

(v) $2x = -5y$

(vi) $3x + 2 = 0$

(vii) $y - 2 = 0$

(viii) $5 = 2x$

Solution: (i) $2x + 3y = 9.3\bar{5}$

$$2x + 3y - 9.3\bar{5} = 0$$

Comparing this equation with $ax + by + c = 0$,

$$a = 2, b = 3, c = -9.3\bar{5}$$

(ii) $x - \frac{y}{5} - 10 = 0$

Comparing this equation with $ax + by + c = 0$,

$$a = 1, b = -\frac{1}{5}, c = -10$$

(iii) $-2x + 3y = 6$

Comparing this equation with $ax + by + c = 0$,

$$a = -2, b = 3, c = -6$$

(iv) $x = 3y$

$$1x - 3y + 0 = 0$$

Comparing this equation with $ax + by + c = 0$,

$$a = 1, b = -3, c = 0$$

(v) $2x = -5y$

$$2x + 5y + 0 = 0$$

Comparing this equation with $ax + by + c = 0$,

$$a = 2, b = 5, c = 0$$

(vi) $3x + 2 = 0$

$$3x + 0.y + 2 = 0$$

Comparing this equation with $ax + by + c = 0$,

$$a = 3, b = 0, c = 2$$

(vii) $y - 2 = 0$

$$0x + 1.y - 2 = 0$$

Comparing this equation with $ax + by + c = 0$,

$$a = 0, b = 1, c = -2$$

(viii) $5 = 2x$

$$-2x + 0.y + 5 = 0$$

Comparing this equation with $ax + by + c = 0$,

Exercise 4.2

Question 1: Which one of the following options is true, and why?

$y = 3x + 5$ has

(i) a unique solution, (ii) only two solutions, (iii) infinitely many solutions

Solution: $y = 3x + 5$ is a linear equation in two variables and it has infinite possible solutions. As for every value of x , there will be a value of y satisfying the above equation and vice-versa.

Hence, the correct answer is (iii).

Question 2: Write four solutions for each of the following equations:

(i) $2x + y = 7$ (ii) $\pi x + y = 9$ (iii) $x = 4y$

Solution: (i) $2x + y = 7$

For $x = 0$,

$$2(0) + y = 7$$

$$\Rightarrow y = 7$$

Therefore, $(0, 7)$ is a solution of this equation.

For $x = 1$,

$$2(1) + y = 7$$

$$\Rightarrow y = 5$$

Therefore, $(1, 5)$ is a solution of this equation.

For $x = -1$,

$$2(-1) + y = 7$$

$$\Rightarrow y = 9$$

Therefore, $(-1, 9)$ is a solution of this equation.

For $x = 2$,

$$2(2) + y = 7$$

$$\Rightarrow y = 3$$

Therefore, $(2, 3)$ is a solution of this equation.

$$(ii) \pi x + y = 9$$

For $x = 0$,

$$\pi(0) + y = 9$$

$$\Rightarrow y = 9$$

Therefore, $(0, 9)$ is a solution of this equation.

For $x = 1$,

$$\pi(1) + y = 9$$

$$\Rightarrow y = 9 - \pi$$

Therefore, $(1, 9 - \pi)$ is a solution of this equation.

For $x = 2$,

$$\pi(2) + y = 9$$

$$\Rightarrow y = 9 - 2\pi$$

Therefore, $(2, 9 - 2\pi)$ is a solution of this equation.

For $x = -1$,

$$\pi(-1) + y = 9$$

$$\Rightarrow y = 9 + \pi$$

$\Rightarrow (-1, 9 + \pi)$ is a solution of this equation.

$$(iii) x = 4y$$

For $x = 0$,

$$0 = 4y$$

$$\Rightarrow y = 0$$

Therefore, $(0, 0)$ is a solution of this equation.

For $y = 1$,

$$x = 4(1) = 4$$

Therefore, $(4, 1)$ is a solution of this equation.

For $y = -1$,

$$x = 4(-1)$$

$$\Rightarrow x = -4$$

Therefore, $(-4, -1)$ is a solution of this equation.

For $x = 2$,

$$2 = 4y$$

$$\Rightarrow y = \frac{2}{4} = \frac{1}{2}$$

Therefore, $\left(2, \frac{1}{2}\right)$ is a solution of this equation.

Question 3: Check which of the following are solutions of the equation $x - 2y = 4$ and which are not:

(i) (0, 2) (ii) (2, 0) (iii) (4, 0) (iv) $(\sqrt{2}, 4\sqrt{2})$ (v) (1, 1)

Solution: (i) (0, 2)

Putting $x = 0$ and $y = 2$ in the L.H.S of the given equation,

$$x - 2y = 0 - 2 \times 2 = -4 \neq 4$$

L.H.S \neq R.H.S

Therefore, (0, 2) is not a solution of this equation.

(ii) (2, 0)

Putting $x = 2$ and $y = 0$ in the L.H.S of the given equation,

$$x - 2y = 2 - 2 \times 0 = 2 \neq 4$$

L.H.S \neq R.H.S

Therefore, (2, 0) is not a solution of this equation.

(iii) (4, 0)

Putting $x = 4$ and $y = 0$ in the L.H.S of the given equation,

$$x - 2y = 4 - 2(0)$$

$$= 4 = \text{R.H.S}$$

Therefore, $(4, 0)$ is a solution of this equation.

(iv) $(\sqrt{2}, 4\sqrt{2})$

Putting $x = \sqrt{2}$ and $y = 4\sqrt{2}$ in the L.H.S of the given equation,

$$\begin{aligned}x - 2y &= \sqrt{2} - 2(4\sqrt{2}) \\&= \sqrt{2} - 8\sqrt{2} = -7\sqrt{2} \neq 4\end{aligned}$$

L.H.S \neq R.H.S

Therefore, $(\sqrt{2}, 4\sqrt{2})$ is not a solution of this equation.

(v) $(1, 1)$

Putting $x = 1$ and $y = 1$ in the L.H.S of the given equation,

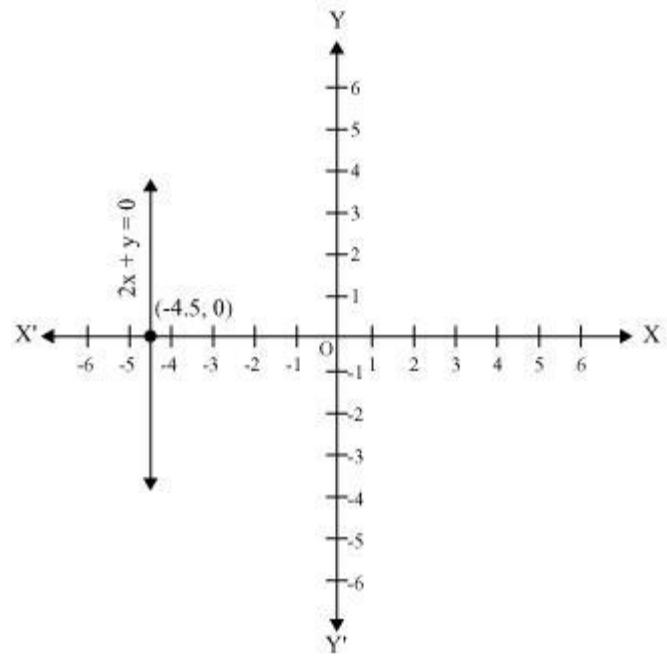
$$x - 2y = 1 - 2(1) = 1 - 2 = -1 \neq 4$$

L.H.S \neq R.H.S

Therefore, $(1, 1)$ is not a solution of this equation.

Question 4: Find the value of k , if $x = 2, y = 1$ is a solution of the equation $2x + 3y = k$.

Solution: Putting $x = 2$ and $y = 1$ in the given equation,


$$2x + 3y = k$$

$$\Rightarrow 2(2) + 3(1) = k$$

$$\Rightarrow 4 + 3 = k$$

$$\Rightarrow k = 7$$

Therefore, the value of k is 7.

